如何做扭矩扳手的MSA分析
扳手扭矩MSA分析
准确度观测值和可接受的基准值之间同意的接近程度。
方差分析一咱经常用于试验设计(DOE)中的统计方法(ANOVA),用于分
析多组的计量型数据以便比较方法和分析变差源。
可视分辨率测量仪器最小增量的大小叫可视分辨率。该数值通常以文字形式(如
广告中)来划分测量仪器的分级。数据的分级数可通过把该增量的
大小划分类预期的过程分布范围(6σ)来确定。
注:显示或报告的位数不一定总表示仪器的分辨率。例如,零件的
测量值为29.075、29.080、29.095等,记录为5位数。然而该仪器的
分辨率为0.005而不是0.001。
评价人变差 在一个稳定环境中应用相同的测量仪器和方法,不同评价人(操作者)对相同零件(被测体)的测量平均值之间的变差。评价人变差(AV)是一咱由于操作者使用相同测量系统的技巧和技能产生的
差别造成的变通原因测量系统变差(误差)源。评价人变差通常被
假定为与测量系统有关的“再现性误差”,但这并不总是正确的(见
再现性)。
偏倚测量的观测平均值(在可重复条件下的一组试验)和基准值之间的
差值。传统上称变准确度。偏倚是在测量系统操作范围内对一个点
的评估和表达。
校准在规定条件下,建立测量装置和已知基准值和不确定度的可溯源标
准之间的关系的一组操作。校准可能也包括通过调整被比较的测量
装置的准确度差异而进行的探测、相关性、报告或消除的步骤。
校准周期两次校准间的规定时间总量或一组条件,在此期间,测量装置的校
准参数被认定为有效的。
能力以测量系统短期评定为基础的一种测量误差的合成变差(随机的和
系统的)的估计。
置信区间期望包括一个参数的真值的值的范围(在希望的概率情况下叫置信
水平)。
控制图一种按时间顺序以样本测量为基础的过程特性图形,(这种图形)用
于显示过程的行为,识别过程变差的形式,评价稳定性并指示过程
方向。
数据一组条件下观察结果的集合,既可以是连续的(一个量值和测量单
位)又可以是离散的(属性数据或计数数据如成功/失败、好坏、过/
不通过等统计数据)。
设计的试验一种包含一系列试验统计分析的有计划的研究,在试验中,有目的
地改变过程因子并观察结果,以便确定过程变量之间的联系并改进
过程。
分辨力(别名)又称最小可读单位,分辨力是测量分辨率、刻度限值或测
量装置和标准的最小可探测单位。它是是弄虚作假设计的一个固有
特性,并作为测量或分级的单位被报告。数据分级数通常称为“分
辨力比率”,因为它描述了给定的观察过程变差能可靠地划分为多少级。
明显的数据分级能通过测量系统有效分辨率和特定应用于下被观察过程的零件变差
可靠地区分开的数据分级或分类。见ndc。
有效分辨率考虑整个测量系统变差时数据分级大小叫有效分辨率。基于测量系
统变差的置信区间长度来确定该等级的大小。通过把该数据大小划
分为预期的过程分布范围能确定数据分级数(ndc)。对于有效分辨
率,该ndc的标准(在97%置信水平)估计值为1.41[PV/GRR]。(见
Wheeler,1989,一书中的另一种解释。)
F比在选定的置水平上,用于评估随机发生概率的一系列数据的组间均
方误差与同组内均方误差之间的数学比率的统计表达。
量具R&R(GRR)一个测量5系统的重复性和再现性的合成变差的估计。GRR变差等
于系统内和系统变差之和。
直方图分组数据的频率的一种图形表示(条形图),用来提供数据分布的直
观评价。
受控只表现出随机、普通原因变差的过程的状态(与无序、指定的或特
殊原因变差相反)。只有随机变差的过程操作是统计稳定的。
独立一个事件或变量的发生对另一个事件或变量发生的概率没有影响。
独立和相同的分布通常叫“iid”。一组同质的数据,这些数据相互独立并随机分布于一
个普通分布之中。
交互作用源于两个或多个重要变量的合成影响或结果,评价人和零件之间具
有不可附加性。评价差别依赖于被测零件。
线性测量系统预期操作范围内偏倚误差值的差别。换句话说,线性表示
操作范围内多个和独立的偏倚误差值的相关性。
长期能力对某个过程长时间内表现的子组内的统计量度。它不同于性能,因
为它不包括子组间的变差。
被测体在规定条件下被测量的特殊数量或对象;对于测量应用一个定义的
系列规范。
测量系统用于量化一个测量单位或确定被测特性性质的仪器或量具、标准、
操作、方法、夹具、软件、人员、环境、和条件的集合;用来获得
测量的整个过程。
测量系统误差由于量个偏倚、重复性、再现性、稳定性和线性产生的合成变差。
计量学测量的科学
ndc分级数。1.41(PV/GRR)
不可重复性由于被测体的动态性质决定的对相同样本或部件重复测量的不可能
性。
分级数见ndc
不受控表现出混乱的、可指定的或特殊原因变差的过程的状态。不受控的
过程即统计不稳定。
零件间变差 与测量系统分析有关,对于一个稳定过程零件变差(PV)代表预期的不同零件和不同时间的变差。
性能以测量系统长期评价为基础的测量误差(随机的和系统的)合成变
差的估计,包括所有随时间变化的显著的和可确定的变差源。
精密度测量系统在操作范围内(容量、范围和时间)的分辨力、敏感性和
重复性的净效果。在一些组织中,精密度和重复性具有互换性。事
实上,精密度最经常用于描述测量范围内的预期重复测量变差,这
个范围可以是容量和时间。通常建议使用比术语“精密”更具有描
述性的术语。
概率以已收集数据的特定分布为基础的,描述特定事件发生机会的一种
估计(用比例或分数)。概率估计值范围从0(不可能事件)到1)
必然事件)。一组条件或原因共同作用产生某种结果。
过程控制一种运行状态,将测量目的和决定准则应用迂实时生产以评估过程
稳定性和测量体或评估自然过程变差的性质。测量结果显示过程或
者是稳定和“受控 ”,或者是“不受控”。
产品控制一种运行状态,将测量目的和决定准则应用于评价测量体或评价特
性符合某规范。测量结果显示过程或是“在公差内”或者是“在公
差外”。
基准值轴承认的一个被测体的数值,作为一致同意的用于进行比较的基准
或标准样本:
l 一个基于科学原理的理论值或确定值;
l 一个基于某国家或国际组织的指定值;
l 一个基于某科学或工程组织主持的合作试验工作产生的一致同意值;
l 对于具体用途,采用接受的参考方法获得的一个同意值。
该值包括特定数量的定义,并为其它已知目的的自然接受,有时是按惯例被接受。
注:与基准值同义使用的其它术语:
已接受的基准值
已接受值
惯用值
惯用真值
指定值
最佳估计值
标准值
标准测量
回归分析两个或多个变量之间的关系的统计研究。确定两个或多个变量间数
学关系的一种计算。
重复性在确定的测量条件下,来源于连续试验的普通原因随机变差。通常
指设备变差(EV)尽管这是一个误导。当测量条件固定和已定义时,
即确定零件、仪器标准、方法、操作者、环境和假设条件,适合重
复也包括在特定测量误差模型下条件下的所有内部变差。
可重复性对相同样件或部件进行重复测量的能力,被测体或测量环境没有明
显的物理变化。
重复重复性(相同的)条件下的多次实验。
再现性测量过程中由于正常条件改变所产生的测量均值的变差。一般来说,
它被定义为在一个稳定环境下,应用相同的测量仪器和方法,相同
零件(被测体)不同评价人(操作者)之间测量值均值的变差。这
种情况对受操作者技能影响的手动仪器常常是正确的,然而,对于
操作者不是主要变差源的测量过程(如自动系统)则不正确的。由
于这个原因,再现性指的是测量系统之间和测量条件之间的均值变
差。
分辨率可用作测量分辨率或有效分辨率。测量系统探测并如实显示被测特
性微小变化的能力。(参见分辨力)
如果对与标准零件之差小于δ的任何零件的指示值与标准零件指示
值概率相等,则测量系统分辨率为δ。测量系统的分辨率受测量仪器
以及整个测量系统其它变差源的影响。
散点图数据的X-Y坐标图,用于评估两个变量之间的关系。
敏感性导致一个测量装置产生可探测(可辨别)输出信号的最小输入信号。
一个仪器应至少和其分辨力单位同样敏感。敏感性是通过固有量具
的设计与质量、服务期内维护和操作条件确定。,敏感性是用测量单
位报告的。
显著水平被选择用来测试随机输出概率的一个统计水平,也同风险有关,表
示为α风险,代表一个决定出错的概率。
稳定性既指测量过程的统计稳定性又指随时间变化的测量稳定性。两者对
测量系统预期用途都是重要的。统计稳定性包含一个可预测的、潜
在的测量过程,该过程在普通原因变差(受控)条件下运行。测量
稳定性(别名漂移)代表测量系统在运行周期(时间)内对测量标
准或基准的必要的符合程度。
容差(公差)为了维持配合、形式和功能,与标准值或公称值相比允许的偏差。
不确定度同测量结果有关的一个参数,代表数值的分散特性,此数值归结于
被测体(VIM)是合理的。在给定的置信水平内,对一个测量结果
的指定范围描述,限值期望包含真实测量结果。不确定度是一个测
量可靠性的量化表述。
单峰具有一种模式的一组邻近的数据。
扭矩扳手是靠扭矩扳手检定仪来检定,扭矩扳手检定仪的检定原理一般是选取检定点,通过检定仪上的传感器来测量某检定点扭矩扳子的示值与实际值的差值,现在通用的是0.3级精度的传感器检定1--10级的扭矩扳手。扭矩扳手检定周期一般根据你使用的状况确定为三个月到一年,最少选择包括扭矩扳手工作上下限的均布三点作为检定点
如果对你有帮助,敬请采纳
主要检测在质量控制中对扭力值的追踪测试和对紧固件的破坏性试验等。通过设置目标扭力值的上下限,当扭力达到设定值时发出提示音,LED指示灯会闪烁液晶显示。
1.示值跟踪:加力过程中,跟踪显示所加扭矩值。
2.峰值保持:加力过程中,显示值随着紧固力矩的增大而增大,一旦加力停止,峰值保持功能将停止在加力前的最大力矩值,使用者可以检查力矩值的大小。
3.预置报警:紧固前预先设定需要的紧固力矩,在紧固过程中,当紧固力矩达到预定的力矩值时,预置报警灯点亮同时报警声响起,提示停止加力。
4.三种单位自动转换(N.m、 1bf .ft、 1bf.in)。
5.欠压显示:当工作电压降低到规定的电压值,液晶显示器显示¨UL¨,此时提示用户更换电池。
按所需定力数值,选择相应的并经校验合格的定扭矩扳手,不准使用没有经过校验的定扭矩扳手。要用平衡、缓慢的力扭转扳手,不能急扭,手握住定扭矩扳手手柄中间点,垂直于扳手中心线拉动手柄,直到达到所要求的力矩为止,不允许随意手握根部和端点。
如果对你有帮助,敬请采纳。
扭矩扳手的使用:
1.根据螺栓或螺母所需的扭矩值,确定预设的扭矩值。一般车辆轮胎螺丝的扭矩为110-150n 、;m,具体你最好参考你的车辆手册;
2.预设扭矩值时,应拉下扭矩扳手手柄上的锁紧环,转动手柄,将刻度的差动刻度线值和主刻度线调整到所需的扭矩值;
3.调整完成后,可以松开手柄上的锁紧环,手柄会自动锁紧;
4.用相应规格的套筒安装挂在扳手的方榫上,然后牢牢卡住紧固件,最后慢慢向手柄施力。施力时一定要按照指示的引线方向,然后拧紧,直到发出咔哒一声的信号,就可以停止施力了。
扭矩扳手刻度读数方法
扭矩扳手是带表的扭矩仪器,所以直接读取指针上的数值就是测量的数据值。如果扭矩扳手是套筒,有分刻度指示器,你要先读出主刻度上的刻度值,再把刻度值放在差动筒或分刻度上,结果就是测得的数据值。
扭矩扳手的注意事项:
1.如果不需要使用扭矩扳手,将扳手的扭矩值调整到最小,放入指定的盒子中;
2.未经允许,不要拆卸扭矩扳手。如果拆卸方法不正确,会损坏内部结构,最后导致扭矩扳手无法使用;
3.不要使用丙酮或其他溶液清洁扳手。要清洁扳手,请使用少量酒精和干净的毛巾。
@2019
扭矩扳子-也叫扭力扳手或扭矩扳手,力矩就是力和距离的乘积,在紧固螺丝螺栓螺母等螺纹紧固件时需要控制施加的力矩大小,以保证螺纹紧固且不至于因力矩过大破坏螺纹,所以用扭矩扳手来操作。首先设定好一个需要的扭矩值上限,当施加的扭矩达到设定值时,扳手会发出“卡塔”声响或者扳手连接处折弯一点角度,这就代表已经紧固不要再加力了。虽然现在国产、进口扭矩扳手的型号、样式各异,但由于工作原理相同或相似,所以在使用中有很多相同之处。通过多年的使用和检定,我们总结出一些扭矩
扳手的使用经验与常识。
1. 扭矩扳手只能用作安装紧固件(螺栓、螺母) 时测量其安装力矩使用,绝不能作为拆卸工具去拧松已拧紧的紧固件。不能敲打、磕碰或作它用。使用时轻拿轻放,不许任意拆卸与调整。绝对不能当锒头使用,敲击工件;严禁用尖硬物碰撞和用强溶剂擦拭数显式扳子的面板及显示区域,以及预置式扳子的刻度窗部位;
2. 在使用扭矩紧固件的场合尽可能带上护目镜,这样可以在突发情况下保护操作者的眼部。
3. 为了保证工作人员正确使用和测量值的准确,防止对工具、设备的损害,必须确保所施加的扭矩值在扭矩设备的范围内,在使用扭矩设备前请正确了解扳手的最大量程,不
能乱用。选择扳手的条件最好以工作值在被选用扳手的量限值20%~80%之间为宜。
4. 紧固时应使用正确的接头,否则会导致施加的扭矩出现人为误差。接头应接触紧密有足够硬度。
5. 从加载的安全考虑,在扳手手柄上尽量使用拉力而不是推力。要调整操作姿势,防止操作失败时人员跌倒。
6. 使用中应平稳施力,请勿强烈冲击、磕碰及跌落;使用后,擦拭干净放入盒内,不可到处放置。定值扳手使用后要注意将示值调节到最小值处,以保证其准确度及使用寿命。否则,往往会使定值扳手提前失效或损坏。据统计,许多定值扳手的非正常性损坏就是由这个原因引起的。这是由于扳手内
的弹簧如果经常处于压缩状态,不能松弛,就会造成弹簧发生永久形变,而这种情况下的扳手是不能修复的(除非更换弹簧) 。所以在实际工作中,无论是使用或保存,都一定要注意这一点。
7. 使用时应严禁在尾部加套管或长柄,有专用配套附件(长柄或套管) 除外。力必须加在手柄尾端,使用时用力要均匀、缓慢。要正确区分扳手柄被锁住了还是扳手润滑不好这两种情况,以使扳手调节到需要的扭矩值。定值扳手锁环处于“锁住”时,不要强行转动手柄。当锁环处于“不锁住”时,调节数值,工作值选定后,使锁环处于“锁住”后进行工作。
扭矩检定实用探讨
目前,手工定量控制螺栓拧紧的方法是使用扭矩扳手来拧紧,控制螺栓拧紧过程的目的是使螺栓的轴向拉伸力恰到好处,并以此达到螺纹副的可靠联接。因此,扭矩的控制在各种机械类、电子类产品的开发研究、测
试分析、质量检验、型式批准、定型鉴定和节能、安全或优化控制等工作中成为必不可少的内容,也使得定期的扭矩测量和检定十分必要。
一、扭矩检定专业知识
1.扭矩专业知识
(1)扭矩的定义
作用在物体上偏离旋转中心的地方、使物体产生旋转方向的变形或可能产生转动的力和长度的复合作用,称之为力矩或扭矩。物体在扭矩作用下转动的中心成为矩心,矩心到力作用线的垂直距离称为力臂,则扭矩M 等于力F 和力臂L 的乘积。使物体顺时针
方向转动的扭矩为正,反之为负。如图1中M1=F1L1,M2=F2L2 。
(2)扭矩的分类
扭矩扳手按所使用的动力源,一般分为手动、电动、气动和液压四大类:手动基本上指手动扳手;气动是以压缩空气为动力的;电动是指交、直流电都可以作为电源的;液压类的与气动类似,但液压源是由液压油提供。
按工作原理分类,扭矩扳手可分为指示式和定值式两大类,指示式可细分为数显式和
指针式,定值式可细分为机械定值式(又称预置式)和电子定值式。
扭矩扳手按其状态又可分为静态扭矩和动态扭矩两大类:静态扭矩是指不长的时间内扭矩值不随时间变化或随时间变化很小和很缓慢的扭矩,包括静止扭矩、恒定扭矩、缓变扭矩和脉动扭矩;动态扭矩是指扭矩值随时间变化很大和很快、甚至换向的扭矩,包括振动扭矩、随机扭矩和过度扭矩。报响式扳手又称预置式扳手,属于定值式类,这类扳手可分为机械定值式和电子定值式。
二、扭矩扳子的主要技术指标
1. 示值相对误差:扭矩扳子示值相对误差e (%)=(扭矩扳子刻度值-测
试仪刻度值)/测试仪刻度值×100
2. 示值重复性误差:
扭矩扳子示值重复性误差(r %)=(测试仪刻度值-测试仪刻度值)/测试仪刻度值×100
通常情况下,考核和衡量扭矩扳子的品质,主要有五个方面的指标:一是各种功能性,二是示值相对误差,三是示值重复性误差,四是长期稳定性,五是使用安全性。人们在选择扭矩扳子时往往只注重各种功能性、示值相对误差和示值重复性误差,而忽略了长期的稳定性和使用的安全性。示值相对误差和
示值重复性误差通过扭矩检定仪可以直接检测出来,稳定性和安全性只有通过使用和长期的跟踪检测才能体现出来。
2.扭矩检定仪的选择
扭矩测试仪基本上是为了检定扭矩扳手及向光扭矩设备而设计生产的,扭矩追溯系统中属于中间衔接部分,故对扭矩测试仪必须要有以下基本要求:合格的扭矩精度等级、完整的扭矩检定报告、完整的检定追溯系统和符合实验室的高要求质量,如图2所示。
(1)分辨力
对扭矩扳手检定仪的分辨力,一般要求是:指针式最小分度值应Mmax A/200,A 为准确度等级的等级数;数字式的最小有效数字增量应MmaxA/1000且为1、2、5、乘以10的整数次方,A 为准确度等级的等级数;例如0.5级、额定扭矩为1000N.m 的数显扭矩扳手检定仪的有效最小数字增量不大于0.05N.m 。
(2)量程、准确度选用
扭矩扳手一般的工作范围是测量上限值得20%至测量上限值,部分测量下限高于测量上限的20%,工作范围从测量下限开始。新制造和修理后的扭矩扳手应以测量上限值的120%加载值进行超负荷试验。 其给出标准扭矩值的扩展不确定度为被检扳手准确度等级的1/3~1/10,或检定仪的准确度等级应优于被检扳手准确度等级的1/3;特殊的扭矩扳手检定仪不受次限制,但起点不得小于最大扭矩之的5%,且分辨力足够、延伸范围经检定合格。
(3)个案例举
针对预置式扭矩扳手,在选用检定装置时,由于其本身精确度等级为3~10级,按量传体系的三倍关系,应选用准确度等级至少为2级,通常为1级的扭矩检定装置。
与此同时,根据扭矩扳手的检定规程对扭矩测量仪分辨力的要求,应事先确定所选用的测量装置各量程的分度值符合要求:检定仪必须具备峰值保持功能,具有足够的响应速度,最好还应具有能保持扳手处于正确的检定方位和加载作用点可调的功能。
三. 扭矩检定的实际操作
(1)准备工作
为了确保数据真实,检定前应作检定装置和扳手的外观检查,确定无误。扭矩扳手检定装置应在预热和预扭后调整零位,扭矩扳手应在实验室内放置足够长的时间按达到等温度要求,在三次预扭后调好零位,扭矩
扳手预扭后调好零位等再开始检定,数显扭矩扳手也应预热。
另外,严格地说,扭矩扳手的检定的工位(指扳手杆身处于水平位置或垂直位置)也是由要求的,在什么位置使用就应什么位置检定,对某些初始零位不很确定的指针扳手或数显扳手更应这样,并且检定装置应具有完整的加载定位机构,帮助固定扳手的检定位置。
(2)基本操作过程
按照扳手的额定值正确选择检定装置的量程,开机预热后,将外观检查正常的扳手在检定装置上按额定值预扭三次;取下扳手,调节好检定装置的零位并选用其峰值保持
功能,手动设置扭矩扳手的预置值为检定点,将扳手正确安装在检定装置上预扭三次,按照选定的检定点平稳施加扭矩到发出听觉或其它指示信号后立即停止加载、卸除载荷使扳手恢复常态,读出和记录各点的指示值,至少三次反复该过程完成该点的检定,重新设置下一个检定点重复以上过程知道完成全部检定。
其中,在检定指针式扭矩扳手的过程中,应首先保证双眼平视会聚于指针的转动,确保对指针与度盘刻线重合位置的判读正确;其次,保证对零操作的位置正确,也就是保证使用位置与检定位置与零位置三者一致。
为保证这一点,应使用具有稳定慢速加载功能的检定加载机构。检定顺序从小扭矩值至大扭矩值,每点每次需间隔5s 以上,在检定完每点每次的数值,需将力量完全释放,再做下一次(需注意每点扭矩值之重复度不可误差太大)。
(3)个案例举
手动示值式扭矩扳手在检定时,则应按照扳手的额定值正确选择检定装置的量程,开机预热后,将外观检查正常的扳手在检定装置上按额定值预扭三次;取下扳手,按检定工位分别调节好扳手和检定装置的零位,将扳手正确安装在检定装置上,按照选定的检定点施加扭矩到检定值,读出和记录各点的
指示值,逐级施加扭矩到额定值后,卸除加载,并检查扭矩扳手的指示回零情况;重新调整零位后重复以上步骤进行第二次检定,此过程至少进行三次。
注:指针式有从动指针的必须带从动指针进行检定。双向扭矩扳手应进行双向检定,同样要进行反向预扭三次在按上述步骤进行反向的检定。
(4)检定周期
扭矩扳手的检定周期应主要按照扳手的结构特点和使用频度综合确定:普通扳手短则一个月、最长不得超过一年(一年通常只是用于指针式和数字式扳手);电动和气动扳手在使用要求高的场合应每周甚至每天检
查一次;预置式扳手则要按照使用频度通过细致监控来确保能正常使用,一般连续使用检定周期不应超过3个月。当用于扭矩控制精度要求较高的工位和重要岗位时,建议每班使用前检定一次。
而对于新制造、改装或修理后的扭矩扳手检定仪而言,一般需进行两次检定合格方准使用。这两次间隔时间为3个月,以后检定合格周期延长,但最长不得超过1年。
如果一定要说,你精确测量出力臂大小之后(轴心到施力点的距离),可以用弹簧秤/砝码加力,计算出实际施加扭矩,再和扭矩扳手的示值比较。这样校验精确度低,而且基本只能适用于表盘式扭力扳手,如果是折弯式或者响声式,则误差会非常大。
舍不得花钱买校验仪的话,可以考虑送计量所检定,或者联系你的供应商,让他们帮你想办法。
另:意大利Beta的扭力扳手都是可以免费回厂校准的。