液压传动的基本原理是什么?
液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。
扩展资料:
液压传动是指以液体为工作介质进行能量传递和控制的一种传动方式。在液体传动中,根据其能量传递形式不同,又分为液力传动和液压传动。液力传动主要是利用液体动能进行能量转换的传动方式,如液力耦合器和液力变矩器。液压传动是利用液体压力能进行能量转换的传动方式。
在机械上采用液压传动技术,可以简化机器的结构,减轻机器质量,减少材料消耗,降低制造成本,减轻劳动强度,提高工作效率和工作的可靠性。
液压传动系统主要由5部分组成。
1.动力元件
动力元件是把原动机输入的机械能转换为油液压力能的能量转换装置。其作用是为液压系统提供压力油。动力元件为各种液压泵。
2.执行元件
执行元件是将油液的压力能转换为机械能的能量转换装置。其作用是在压力油的推动下输出力和速度(直线运动),或力矩和转速(回转运动)。这类元件包括各类液压缸和液压马达。
3.控制调节元件
控制调节元件是用来控制或调节液压系统中油液的压力、流量和方向,以保证执行元件完成预期工作的元件。这类元件主要包括各种溢流阀、节流阀以及换向阀等。这些元件的不同组合便形成了不同功能的液压传动系统。
4.辅助元件
辅助元件是指油箱、油管、油管接头、蓄能器、滤油器、压力表、流量表以及各种密封元件等。这些元件分别起散热贮油、输油、连接、蓄能、过滤、测量压力、测量流量和密封等作用,以保证系统正常工作,是液压系统不可缺少的组成部分。
5.工作介质
工作介质在液压传动及控制中起传递运动、动力及信号的作用。T作介质为液压油或其他合成液体。
与机械传动比较,液压传动具有以下主要优点:
(1)由于一般采用油液作为传动介质,因此液压元件具有良好的润滑条件;工作液体可以用管路输送到任何位置,允许液压执行元件和液压泵保持一定距离;液压传动能方便地将原动机的旋转运动变为直线运动。这些特点十分适合各种工程机械、采矿设备的需要,其典型应用实例就是煤矿井下使用的单体液压支柱和液压支架。
(2)可以在运行过程中实现大范围的无级调速,其传动比可高达1:1 000,且调速性能不受功率大小的限制。
(3)易于实现载荷控制、速度控制和方向控制,可以进行集中控制、遥控和实现自动控制。
(4)液压传动可以实现无间隙传动,因此传动平稳,操作省力,反应快,并能高速启动和频繁换向。
(5)液压元件都是标准化、系列化和通用化产品,便于设计、制造和推广应用。
与电力传动相比,液压传动的主要优点有以下几点:
(1)质量小,体积小。这是由于电动机受到磁饱和的限制,其单位面积上的切向力与液压机械所能承受的液压相差数十倍。
(2)运动惯性小,响应速度快。液压马达的力矩惯量比(即驱动力矩与转动惯量之比)较电动机大得多,故其加速性能好。例如,加速一台中等功率的电动机通常需要一秒至几秒钟,而加速同样功率的液压马达只需要0.1 s左右。这种良好的动态特性,对液压控制系统更有其重要意义。
(3)低速液压马达的低速稳定性要比电动机好得多。
(4)液压传动的应用,可以简化机器设备的电气系统。这对于具有爆炸危险的煤矿井下工作大有好处。
缺点
(1)在传动过程中,由于能量需要经过两次转换,存在压力损失、容积损失和机械摩擦损失,因此总效率通常仅为0.75~0.8。
(2)传动系统的工作性能和效率受温度的影响较大,一般的液压传动,在高温或低温环境下工作,存在一定困难。
(3)液体具有一定的可压缩性,配合表面也不可避免地有泄漏存在,因此液压传动无法保证严格的传动比。
(4)工作液体对污染很敏感,污染后的工作液体对液压元件的危害很大,因此液压系统的故障比较难查找,对操作、维修人员的技术水平有较高要求。
(5)液压元件的制造精度、表面粗糙度以及材料的材质和热处理要求都比较高,因而其成本较高。
总的说来,液压传动的优点是主要的。它的某些缺点随着生产技术的发展,正在逐步得到克服。如果进一步吸取其他传动方式的优点,采用电 液、气,液等联合传动,更能充分发挥其特点。
液压传动主要应用如下:
(1)一般工业用液压系统塑料加工机械(注塑机)、压力机械(锻压机)、重型机械(废钢压块机)、机床(全自动六角车床、平面磨床)等;
(2)行走机械用液压系统工程机械(挖掘机)、起重机械(汽车吊)、建筑机械(打桩机)、农业机械(联合收割机)、汽车(转向器、减振器)等;
(3)钢铁工业用液压系统 冶金机械(轧钢机)、提升装置(升降机)、轧辊调整装置等;
(4)土木工程用液压系统 防洪闸门及堤坝装置(浪潮防护挡板)、河床升降装置、桥梁操纵机构和矿山机械(凿岩机)等;
(5)发电厂用液压系统涡轮机(调速装置)等;
(6)特殊技术用液压系统 巨型天线控制装置、测量浮标、飞机起落架的收放装置及方向舵控制装置、升降旋转舞台等;
(7)船舶用液压系统 甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;
(8)军事工业用液压系统火炮操纵装置、舰船减摇装置、飞行器仿真等。
液压是机械行业、机电行业的一个名词。液压可以用动力传动方式 ,成为液压传动。液压也可用作控制方式, 称为液压控制。
液压传动是以液体作为工作介质,利用液体的压力能来传递动力。
液压控制是以有压力液体作为控制信号传递方式的控制。用液压技术构成的控制系统称为液压控制系统。液压控制通常包括液压开环控制和液压闭环控制。液压闭环控制也就是液压伺服控制,它构成液压伺服系统,通常包括电气液压伺服系统(电液伺服系统)和机械液压伺服系统(机液伺服系统,或机液伺服机构)等 。
一个完整的液压系统由五个部分组成,即能源装置、执行装置、控制调节装置、辅助装置、液体介质。液压由于其传递动力大,易于传递及配置等特点,在工业、民用行业应用广泛。液压系统的执行元件(液压缸和液压马达)的作用是将液体的压力能转换为机械能,从而获得需要的直线往复运动或回转运动。液压系统的能源装置(液压泵)的作用是将原动机的机械能转换成液体的压力能。
参考资料:百度百科-液压传动
液压传动式汽车起重机的液压系统经常采用开式系统。现以国产QY-8型汽车式起重机来对汽车起重机液压系统作一个介绍。它是在黄河JN-150型汽车起重机基础上改装的,最大起重重量是8吨,主要用于工厂、矿山、码头、料场和建筑工地进行装卸或安装作业。起重机行车部分与载重汽车相同,为机械传动,其余部分都采用液压传动。因此该机结构紧凑、操作方便、工作安全可靠。
图为该机液压系统图。起重机为全回转式,可分为平台上部和平台下部两部分。上下部的油路通过中心回转接头22 连接。
起升机构及回转机构均为ZM40型轴向 柱塞式液压马达驱动,此种马达转矩小,转速高,系高速小扭矩马达,在起升机构中,高速小扭矩马达通过圆柱齿轮减速器驱动卷筒转动。在架转机构中,高速小扭矩马达通过蜗杆减速器与齿轮传动机构驱动平台旋转。起重机吊臂的伸缩和变幅,分别由液压缸14和15一起驱动。
整机液压系统由一台ZBD-40型轴向柱塞泵供油,各执行元件的动作则由两组多路阀控制。
两联手动换向阀24和25 之间组成串连油路。可同时操纵前后支腿动作。在支腿液压缸上装有液压锁,以防止起重机作业时活塞杆因滑阀泄漏而自动缩回。
系统中的第II组多路阀,用来控制伸缩臂液压缸、回转与起升液压马达动作、多路阀中的四联换向滑阀组成串联油路。
在起重机中,起升、变幅和吊臂在重力载荷作用下自由下降。在起升、变幅、和吊臂伸缩油路中,分别设置了平衡阀12、13、20以保持其平稳下降。此外平衡阀又能起到液压锁作用,也可能将吊臂与吊重可靠地支承住。
在起升机构中,还有常闭式制动器19。当起升机构工作时,由系统压力将制动器自动打开,液压马达停转时,在弹簧力的作用下自动上闸,这里的控制器仅作为停止器使用,以防止液压马达因内漏而造成吊重下降。
起重机回转速度很低,一般转动惯性力矩不大,所以在回转液压马达的进回油路中,没有设置过载和补油阀。
系统中的压力控制,是由两组多路阀中的安全阀实现的。滤油器2装在液压泵排油路上,这种方式可以保护除泵以外的全部液压元件。
起重机液压系统已经逐渐从生产工作中渗透到我们的生活中,并且起重机液压系统的工作得到了大家的肯定,那么起重机液压系统是如何工作的呢?起重机液压系统原理图所包含的内容有哪些呢?起重机液压系统原理图对未来的起重机液压系统会有怎样的影响呢,起重机采用液压传动,最大起重量为80kN(幅度为3m时),最大起重高度为11.5m,起重装置连续回转。该机具有较高的行走速度,可与装运工具的车编队行驶,机动性好。当装上附加吊臂后,可用于建筑工地吊装预制件,吊装的最大高度为6m。液压起重机的承载能力大。可在有冲击、振动、温度变化大和环境较差的条件下工作。其执行元件要求完成的动作比较简单、位置精度较低。因此液压起重机一般采用中、高压手动控制系统,以方便操纵,同时系统对安全性要求也较高。该系统的液压泵由汽车发动机通过装在汽车底盘变速箱上的取力箱传动。液压泵的工作压力为21MPa,排量为40mL/r,转速为1500r/min。液压泵通过中心回转接头从油箱中吸油,输出的压力油经手动阀组A和B输送到各个执行元件。溢流阀12是安全阀,用以防止系统过载,调整压力为19MPa,其实际工作压力可由压力表读取。这是一个单泵、开式、串联液压系统。重机液压系统以自己强大的行走速度、环境适应性、机动性强、自动能力强、操作简单方便优点,所以它在很快的适应了现代人的工作需要,对于那些即将走向一线的工作人员来说,对起重机液压系统原理图掌握是必须的工作,这不仅是为了产生的需要,同时更是为了起重机液压系统原理图将来发展做更多铺垫。
液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。
液压传动的早期运用
[编辑本段]
1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动 的逐步建立奠定了基础。20 世纪初康斯坦丁·尼斯克(G·Constantimsco)对能量波动传递所进行的理论及实际研究1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后,日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。
液压传动的应用范围的基本原理
[编辑本段]
液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
液压传动的基本原理是在密闭的容器内,利用有压力的油液作为工作介质来实现能量转换和传递动力的。其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。
在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。
液压传动系统的组成
[编辑本段]
液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。
1、动力元件(油泵) 它的作用是把液体利用原动机的机械能转换成液压力能;是液压传动中的动力部分。
2、执行元件(油缸、液压马达) 它是将液体的液压能转换成机械能。其中,油缸做直线运动,马达做旋转运动。
3、控制元件 包括压力阀、流量阀和方向阀等。它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。
4、辅助元件 除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件及油箱等,它们同样十分重要。
5、工作介质 工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。
液压传动的优缺点
[编辑本段]
1、液压传动的优点
(1)体积小、重量轻,例如同功率液压马达的重量只有电动机的10%~20%。因此惯性力较小,当突然过载或停车时,不会发生大的冲击;
(2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速,且调速范围最大可达1:2000(一般为1:100)。
(3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;
(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;
(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;
(6)操纵控制简便,自动化程度高;
(7)容易实现过载保护。
(8)液压元件实现了标准化、系列化、通用化、便于设计、制造和使用。
2、液压传动的缺点
(1)使用液压传动对维护的要求高,工作油要始终保持清洁;
(2)对液压元件制造精度要求高,工艺复杂,成本较高;
(3)液压元件维修较复杂,且需有较高的技术水平;
(4)液压传动对油温变化较敏感,这会影响它的工作稳定性。因此液压传动不宜在很高或很低的温度下工作,
一般工作温度在-15℃~60℃范围内较合适。
(5)液压传动在能量转化的过程中,特别是在节流调速系统中,其压力大,流量损失大,故系统效率较低。
液压元件分类
[编辑本段]
动力元件- 齿轮泵、叶片泵、柱塞泵、螺杆泵
执行元件-液压缸:活塞液压缸、柱塞液压缸、摆动液压缸、组合液压缸
液压马达:齿轮式液压马达、叶片液压马达、柱塞液压马达
控制元件-方向控制阀:单向阀、换向阀
压力控制阀:溢流阀、减压阀、顺序阀、压力继电器等
流量控制阀:节流阀、调速阀、分流阀
辅助元件-蓄能器、过滤器、冷却器、加热器、油管、管接头、油箱、压力计、流量计、密封装置等
如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请 编辑词条
参考资料:
1.《液压于气动技术》
2.液压与气压传动,华中科技大学出版社,何存兴主编
贡献者(共9名
omiomi12、Modena之谜、iamchenzetian、 水木秋寒、sfrh、清露不留痕、happywolf2007、再见西雅图、少昊被判无妻
本词条在以下词条中被提及:
山东农业大学机电学院、汽车传动系
“液压传动”在汉英词典中的解释(来源:百度词典):
1.hydraulic transmission