基本不等式链有哪些?
高中4个基本不等式链:
√[(a+b)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。
平方平均数≥算术平均数≥几何平均数≥调和平均数。
一、基本不等式
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
二、基本不等式两大技巧
“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。
调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
三、基本不等式中常用公式
(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)
(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)
(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)
(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)
(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)
四、不等式定理口诀
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图、建模、构造法。
高中数学基本不等式链如下:
算术平均数( arithmetic mean),又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。它主要适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。
平方平均数(quadratic mean),又名均方根(Root Mean Square),是指一组数据的平方的平均数的算术平方根。
扩展资料:
调和平均数(harmonic mean)又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。
几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。如果总水平、总成果等于所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数,而不能使用算术平均法计算算术平均数。
参考资料:百度百科:几何平均数
几个不等式联立起来,叫做不等式组即不等式链。
用大于号“>”、小于号“<”连接的不等式称为严格不等式,用大于等于号“≥”、小于等于号“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
几个不等式联立起来,叫做不等式组。当有A<B<V类形式的不等式也算不等式组,叫做“不等式链”。
解不等式组步骤
1.审:审清题意,弄懂已知什么,求什么,以及各个数量之间的关系。
2.设:只能设一个未知数,一般是与所求问题有直接关系的量。
3.找:找出题中所有的不等关系,特别是隐含的数量关系。
4.列:列出不等式组。
5.解:分别解出每个不等式的解集,再求其公共部分,最后得出结果。
6.答:根据所得结果作出回答。
因为在高中4个基本不等式链中,从上一代到下一代的转变应该是一步一步对等的。
基本不等式是主要用于寻找某些函数的最大值并证明它们的不等式。
基本不等式公式四个等号成立条件是一正二定三相等,是指在用不等式A+B≥2√AB,证明或求解问题时所规定和强调的特殊要求。
一正:A、B 都必须是正数;
二定:在A+B为定值时,便可以知道A*B的最大值;在A*B为定值时,就可以知道A+B的最小值。
三相等:当且仅当A、B相等时,等号才成立;即在A=B时,A+B=2√AB。基本不等式主要应用于求某些函数的最值及证明不等式。其可表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
扩展资料
如果a、b都为实数,那么a^2+b^2≥2ab,当且仅当a=b时等号成立。
证明如下:
∵(a-b)^2≥0
∴a^2+b^2-2ab≥0
∴a^2+b^2≥2ab
如果a、b、c都是正数,那么a+b+c≥3*3√abc,当且仅当a=b=c时等号成立
如果a、b都是正数,那么(a+b)/2 ≥√ab ,当且仅当a=b时等号成立。
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
四个基本不等式
基本不等式的四种形式:
1、a2+b2≧2ab(a,b∈R)
2、ab≦(a2+b2)/2(a,b∈R)
3、a+b≧2√ab(a,b∈R﹢)
4、ab≦[(a+b)/2]2(a,b∈R﹢)
基本不等式的应用和积互化
求解最值
基本不等式公式四个等号成立条件是一正二定三相等,是指在用不等式A+B≥2√AB证明或求解问题时所规定和强调的特殊要求。
一正:A、B 都必须是正数;
二定:在A+B为定值时,便可以知道A*B的最大值;在A*B为定值时,就可以知道A+B的最小值。
三相等:当且仅当A、B相等时,等号才成立;即在A=B时,A+B=2√AB。基本不等式主要应用于求某些函数的最值及证明不等式。其可表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
算术证明:
如果a、b都为实数,(a-b)²≥0,所以a 2+b 2≥2ab,当且仅当a=b时等号成立,证明如下:
∵(a-b) 2≥0
∴a 2+b 2-2ab≥0
∴a 2+b 2≥2ab,即-2ab≥2ab,
整理可得≥4ab,
如果a、b都是 正数,那么,当且仅当a=b时等号成立。(这个不等式也可理解为两个正数的 算术平均数大于或等于它们的 几何平均数,当且仅当a=b时等式成立)
扩展资料:
基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。一正二定三相等是指在用不等式A+B=2√AB证明或求解问题时所规定和强调的特殊要求。
参考资料来源:百度百科-一正二定三相等
参考资料来源:百度百科-基本不等式
对于正数a、b.基本不等式公式都包含:
1、A=(a+b)/2,叫做a、b的算术平均数
2、 G=√(ab),叫做a、b的几何平均数
3、S=√[(a^2+b^2)/2],叫做a、b的平方平均数
4、H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数
扩展资料基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
(a²+b²)/2≥(a+b)²/4≥ab≥(1/a+1/b)²/4
平方平均数≥算术平均数≥几何平均数≥调和平均数,
参考资料:百度百科-基本不等式
常用不等式公式:
①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。
②√(ab)≤(a+b)/2。
③a²+b²≥2ab。
④ab≤(a+b)²/4。
⑤||a|-|b| |≤|a+b|≤|a|+|b|。
原理:
①不等式F(x)<G(x)与不等式 G(x)>F(x)同解。
②如果不等式F(x) <G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。
③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。
④不等式F(x)G(x)>0与不等式同解不等式F(x)G(x)<0与不等式同解。