强磁化检测的缺点有哪些?
、“强磁”技术是钢丝绳无损检测领域的主流技术,从20世纪初发展至今,技术相对成熟。而“弱磁”技术本质是“剩磁”检测,关于“剩磁”检测,国内相关标准中明确指出“剩磁技术是新开发的一种钢丝绳检测技术,有待进一步的跟踪研究和应用考证。”
2、自国外引进的“强磁”检测技术和钢丝绳无损检测仪,是对钢丝绳施加一个恒定的强磁场,来消除外磁场的干扰,缺陷信号容易检出。而剩磁通常比较微弱,剩磁强度随时间变化较大,检测信号常常被噪声淹没,而且不同时间检测结果差别较大。
3、“弱磁”检测技术实际上只能实现单功能检测,即只能对LMA(钢丝绳金属横截面积)进行检测,无法区分损伤类型,而进口的仪器,如俄罗斯因特龙的钢丝绳无损检测仪就可以真正实现双功能(LMA和LF)的检测,可以很容易地区分断丝和磨损。
4、“强磁”检测可以检测静止磁场,检测结果不受钢丝绳运行速度波动的影响,而“弱磁”检测只能检测变化的磁场,钢丝绳运行速度的波动会影响检测结果。
推荐阅读
钢丝绳无损检测仪的“大脑”
谈到磁检测法,就必然要先了解为何磁检测方法可以成功应用在实践中,磁检测法的理论依据是:利用钢丝绳是磁导体这一特性,当励磁装置将钢丝绳磁化到饱和状态后,无论是其表面或内部存在损伤,都将引起磁路系统中磁场分布的变化。利用有效手段检测由此而引起的磁场分布的变化情况,即可反映出钢丝绳损伤信息的检测信号。
一、 钢丝绳损伤的分类是什么?
首先我们先了解下钢丝绳的损伤分类,原因在于电磁检测仪的是按照可以检测到的缺陷类型来分类的。
1)局部损伤(LF local flaw):钢丝绳中的不连续,诸如内外部断丝、钢丝的蚀坑、较深的钢丝磨损或钢丝绳局部形状异常等。
2)金属横截面积的损失(LMA loss of metallic cross-sectional area):使钢丝绳横截面上金属截面积总和减小的损伤,主要包括磨损、锈蚀、钢丝绳绳径缩细等,相对于LF缺陷,这类缺陷沿钢丝绳轴向方向上的变化一般较缓慢。它是钢丝绳特定区域中材料(质量)缺损的相对度量,通过比较检测点与钢丝绳上象征最大金属横截面积的基准点来测定的。
二、钢丝绳无损检测仪的分类有哪些?
1、交流电磁类
其工作原理类同于变压器原理,初级和次级线圈环绕在钢丝绳上,钢丝绳犹如变压器的铁芯(图1)。初级(激励)线圈的电源为10~30Hz的低频交流电,次级(检测)线圈测定钢丝绳的磁特性。钢丝绳磁特性的任何关键变化都会引起次级线圈的电压变化(幅度和相位)反映出来。
要点:电磁类仪器通常是在较低磁场强度的条件下工作,因此在开始检测前,有必要将钢丝绳彻底退磁。
检测缺陷类型:金属截面积变化LMA缺陷
图1 电磁类仪器传感器示意图
2、直流和永磁(磁通)类仪器
直流和永磁类提供恒定磁通,通过传感器头(磁回路)磁化一段钢丝绳(见图2 ),钢丝绳中的轴向总磁通,能通过感应线圈来测定。
图2 感应线圈测量金属横截面积损失的永磁类设备传感器头示意图
3、漏磁类仪器
直流或永磁类仪器提供恒定磁通,通过传感器头(磁回路)来磁化一段钢丝绳,钢丝绳中的不连续(如断丝)所引起的漏磁,用不同传感器如霍尔元件传感器来检测。
此类仪器用于测定LF缺陷。
图3 断丝导致漏磁的示意图
4、 剩磁类仪器
直流或永磁类磁化装置对钢丝绳磁化后,在确保外加磁场已移除或无外加磁场影响的情况下,利用磁性钢丝绳的剩磁特性,采用能有效测定剩余磁场变化的适当检测装置,来测定钢丝绳内剩磁场的变化。
此类仪器能用于测定金属横截面积的变化和局部损伤的存在。
该方法是新开发的一种钢丝绳检测技术,有待进一步的跟踪研究和应用验证。
图4 剩磁类仪器测量金属横截面积损伤的示意图
一台设备可同时具有磁通和漏磁两种检测原理。
三、两种不同的传感器:感应线圈和霍尔元件
1、感应线圈
谈到感应线圈,大家都不会陌生变压器,当线圈与钢丝绳间产生相对运动时,线圈切割漏磁场产生感应电动势Uc。
图5 感应电动势公式
式中:n-线圈匝数;
Φ-通过线圈的磁通量;
V-钢丝绳相对于感应线圈的运动速度;
dΦ /ds-钢丝绳内部磁通量相对于钢丝绳位移的变化率;
当线圈匝数n与运动速度一定时,感应电动势Uc能反映出钢丝绳中磁通量沿钢丝绳轴向的变化,即钢丝绳有效金属截面积沿轴向的变化。
随着钢丝绳相对于感应线圈和励磁器相对的运动,钢丝绳将被励磁器逐渐磁化至饱和状态,若存在损伤,其内部磁通量(与钢丝绳的有效金属截面积成正比)必然减少,于是就会使得感应线圈产生电压输出。对输出电压进行测量就可以检测出金属截面积的变化。
感应线圈的最大缺点是传感器的输出和检测速度有关,检测速度的不均匀时传感器输出信号产生畸变,极低速时无输出。同时,速度不均匀会造成检测信号在时间轴上的压缩和拉伸,不利于后续信号的处理。
图6 全磁通检测法原理
2、霍尔元件传感器
霍尔元件的原理:在垂直于磁场的导体里通过一定电流,则在垂直于电流和磁场方向上有一个磁场,并在两端有电动势输出成为霍尔效应。
霍尔元件的霍尔电压为:
式中 Kc-霍尔元件的灵敏度系数
Ic-输入的控制电流
B-磁场的磁感应强度
φ-磁感应强度B的方向与元件法向矢量之间的夹角
对于确定的霍尔元件,Kc为常数。在元件安装位置确定,φ值则不变,则式中的VH与B成正比,这就是霍尔元件重要的定向响应特性。应用这一原理,只要检测出霍尔元件两端的输出电压VH便可获得断丝损伤信号。
霍尔元件的最大优点是输出信号不受速度的影响,且体积小,对小间隙空间的磁场测量有很大的优越性。
钢丝的质量其实是主导钢丝绳的使用寿命的最为重要的因素。如果钢丝的材质得不到保证,那钢丝的使用寿命肯定会降低。除此之外,钢丝的生产工艺对于钢丝的质量也是至关重要的。比如,在钢丝冷拔的时候,可以根据不同材质的抗拉强度,这样可以确定总压缩率以及每次的压缩率。不能只为了增大效率而忽略了钢丝的性能问题。
2.钢丝绳的结构型式
2.1按股中相邻的二层钢丝的接触状态有点接触、线接触和面接触钢丝绳
(1)点接触钢丝绳是采用相同的直径钢丝来捻制的。(2)线接触钢丝绳是采用不同的直径钢丝来捻制的。(3)面接触钢丝绳常以圆钢丝作为股芯,然后在最外面的那一层或者说是几层来采用断面的钢丝,可以用挤压方法来绕制。
2.2还有按照钢丝绳的捻向来分有交互捻,同向捻以及不扭转钢丝绳
(1)交互捻钢丝绳。它的丝捻成股与股捻成绳的方向是相反的。(2)同向捻钢丝绳。它的丝捻成股与股捻成绳的方向相同。(3)不扭转钢丝绳。这种钢丝绳由两层绳股来组成,它的支撑点会比普通的钢丝绳大概增加了3.3倍,会产生很大的抗挤压强度,破断的拉力常常大于普通钢丝的破断拉力。所以钢丝绳应该要先选用不扭转的钢丝绳,然后再选用交绕绳或者说是顺绕绳。
3.钢丝绳的缠绕方式
当卷筒绳槽是从右向左时,绳就要从卷筒的下端绕出来,当卷筒绳槽的走向从右向左时,绳就要从卷简上端绕出。不然,钢丝绳绕在卷筒上就会变乱会降低钢丝绳的寿命。
4.摩擦与润滑钢丝绳的摩擦现象会分为钢丝之间的摩擦以及钢丝绳和物体的摩擦
内部摩擦-钢丝绳经过卷筒时所承受的负荷都压在钢丝绳的一侧,细钢丝的曲率半径也不可能完全相同。而且由于钢丝绳的弯曲,钢丝绳内部各个细钢丝会产生滑移,会让相邻股间的钢丝产生局部的压痕。
外部摩擦-钢丝绳在使用的过程中,它的外层与滑轮槽、钩头等东西表面来接触,或与二层钢丝绳产生的挤压引起的摩擦。外部摩擦会让钢丝绳的外层绳股的表面产生磨损,磨损后的钢丝绳绳径会变细,产生径缩和断丝,钢丝绳的寿命就会大大缩短。这是煤矿缠绕式提升机钢丝绳更换的主要原因,因此,枣庄市留庄煤业有限公司主副井提升机均采用增大滚筒直径,以减少钢丝绳在滚筒上缠绕二层的情况,避免钢丝绳在滚筒上产生二次磨损的情况。
5.绳槽尺寸
滑轮的槽底半径对于钢丝绳的使用长短非常重要,一定要合适。如果绳槽太大,会使钢丝绳没有足够的支撑,会引起过早的断丝;如果绳槽太小的话,就会挤压钢丝绳,会变形。
6.钢丝绳的弯曲
弯曲曲率半径即绳径比上钢丝绳的弯曲曲率半径,是用提升机滚筒或提升绞车卷筒的直径和钢丝绳的直径之比来表示的。钢丝绳在现场使用的过程中所受到的弯曲应力会变大,交变应力的幅值也会变大。而在拉力相同的情况之下,滚筒的直径会减小,钢丝的弯曲变形会变大,那么钢丝的磨损就会加快,钢丝绳的寿命也会随着变短。反之,滚筒的直径越大,那么钢丝绳的弯曲力就会相应减小,钢丝绳的寿命会变长。因此在条件允许的情况下提高滚筒的直径是一个提高钢丝绳使用寿命的首选办法。
在摩擦式提升机安排滑轮布局的时候,就要避免让钢丝绳发生反向弯曲。反向弯曲了的话,钢丝绳就会受到更多次的反向弯曲,在这个交变应力的作用下,就会减小钢丝绳的寿命。
7.安全系数的选取
钢丝绳随载荷的增加也会伸长,当载荷超过了弹性极限的时候,钢丝绳就可能会断裂。而安全负荷就是钢丝绳所能承受的额定静负荷。但是钢丝绳在实际处于运动的状态,还会因为受到了加速度以及冲击引起的动载荷等等。
当除了静载荷以外的载荷增多了时,安全系数则会降低,钢丝绳会过载。过载的钢丝绳就算没有发生断裂事故,这样也会大幅度的降低使用寿命。
8.非稳定载荷
非稳定载荷,主要是指钢丝绳受到了剧烈的冲击振动的载荷。钢丝绳在使用的过程中,运行速度常发生变化,会造成冲击载荷。虽然冲击载荷不一定会导致钢丝绳断裂,但是多次的冲击,也会严重地缩短钢丝绳的使用寿命。对于那些已经使用了很长一段时间的钢丝绳,伸缩性会变小,抵抗冲击性的能力也会变低。所以,要避免运动中极具的变化,这样可以缩小钢丝的使用寿命。
9.工作环境
钢丝绳在井筒淋水,潮湿以及污染等恶劣环境中,会因为电化学反应的作用和细菌的侵蚀,被腐蚀,这会直接影响到钢丝绳的使用寿命。所以在恶劣的环境中要勤加油润滑,还要采用镀锌等特种钢丝绳。这种钢丝绳,能有效地防止钢丝绳的腐蚀。
预防磨损的技术措施,专利技术生产的磷化涂层钢丝绳,制绳钢丝表面经过锰系或锌锰系磷化涂层处理,磷化膜大幅度提高钢丝表面的耐磨性和耐蚀性,疲劳寿命是同结构光面钢丝绳的3-4倍,就是因为有效抑制了微动磨损的发生。对钢丝绳定期做补充润滑也可以提高使用寿命,其原理就是润滑降低了钢丝之间摩擦力,从而减缓磨损延长使用寿命。
制造钢丝绳时选用脆性夹杂物少的优质钢材,可以降低疲劳微裂纹的萌生速度,有利于提高使用寿命。
防止钢丝绳锈蚀,同样可以提高使用寿命,镀锌和磷化涂层均可以提高钢丝绳防锈蚀能力,涂油也可以阻止钢丝与空气之中氧气接触防止锈蚀,延长使用寿命。
使用较大的变向滑轮,可以降低钢丝绳疲劳微裂纹的扩展速度,延长使用寿命。
目前,锰系磷化涂层钢丝绳是同结构钢丝绳之中使用寿命最长的,磷化涂层钢丝绳专利技术,是世界钢丝绳领域第一次通过表面处理技术防止微动磨损的发生,也是目前世界钢丝绳领域最先进技术。仅供参考
钢丝绳的变形一般是由于机械损伤造成的,严重时对钢丝绳的强度有很大影响。很多断绳事故都是因为钢丝绳事先受到过变形损伤而没有引起人们的足够重现,结果酿成大祸。本篇百克特为您分析钢丝绳变形的主要原因:
1、外伤:在操作过程中,钢丝绳与其它设备不正常的接触造成的,最明显的外伤是钢丝绳在滑轮绳槽、在卷筒上跳出挡板,结果常常使几十米乃至数百米的钢丝绳因为局部轧坏而损伤。
2、压溃:钢丝绳在卷筒上卷乱后容易产生压溃现象,钢丝绳在卷筒上卷乱时,相互倾轧,在操作时会发出“轧吱轧吱”的声响。由压溃造成的钢丝绳损伤会在局部迅速出现断丝与压扁的痕迹。
3、扭结:钢丝绳在局部扭曲后产生的永久变形叫做钢丝绳扭结。扭曲的方向与钢丝绳旋向一致的称为正扭结,反之称为负扭结。
如何预防钢丝绳变形呢?
1、外伤:防止钢丝绳外伤的关键在于完善设备。滑轮绳槽应设置可靠的防滑槽挡圈,挡圈与滑轮外圈的间隙不大于钢丝绳直径的1/5。卷筒上的钢丝绳不能松弛太多,以防绳圈跳出挡板在缠紧时轧坏。
2、压溃:防止的措施是应按设计规范选择滑轮与卷筒的偏角,必要时可在起升机构中设置排绳器或者压绳装置,防止钢丝绳出现卷乱现象。
3、扭结的预防措施可从以下三方面做
a、在重要的起重设备上选用不旋转钢丝绳。
b、在钢丝绳的自由端设置转子(也称防转装置)。
c、加强操作人员工作责任心,发现扭结迹象立即停止操作,释放还原
常用钢丝绳品种有磷化涂层钢丝绳、镀锌钢丝绳、不锈钢丝绳或涂塑钢丝绳,大气环境中使用,专利技术生产的锰系磷化涂层钢丝绳使用寿命最长,磷化涂层钢丝绳疲劳寿命是光面钢丝绳的3-4倍,重腐蚀环境优选防腐蚀能力突出的热镀锌—磷化双涂层钢丝绳,所有种类的光面钢丝绳正在被全面淘汰。
锰系磷化属于耐磨耐蚀磷化,汽车变速箱钢制齿轮就是经过锰系磷化处理的,可以保证汽车齿轮十余年不损坏,蜗轮蜗杆及枪械表面也是磷化涂层处理的。中国专利技术生产的磷化涂层钢丝绳,优先采用锰系或锌锰系磷化,与光面钢丝绳生产工艺对比,只是增加了最后的耐磨磷化处理工序,制绳钢丝的耐磨性和耐蚀性大幅度提高,使用磷化钢丝直接捻制钢丝绳。目前疲劳试验数据表明,磷化涂层钢丝绳疲劳寿命是同结构国产光面钢丝绳的3-4倍左右,是进口光面钢丝绳的2-3倍,(试验室可比条件下)随着对耐磨磷化配方的研究,还有大幅度提升的可能性,是世界钢丝绳领域目前最先进技术。
锰系磷化就是耐磨磷化,可以解决钢丝绳使用过程中的磨损问题,光面钢丝绳正在被淘汰,因为磷化涂层钢丝绳供不应求,目前比较抢手,需要多询问几家企业。
购买磷化涂层钢丝绳价格高于光面钢丝绳,但单位使用成本低于光面钢丝绳。目前的试验数据证明磷化涂层钢丝绳疲劳寿命是光面钢丝绳的3-4倍,钢丝绳使用寿命与疲劳寿命是正比关系,按照现在钢丝绳市场的大致价格,锰系磷化涂层钢丝绳的价格虽然高于光面钢丝绳,而使用寿命延长幅度远高于价格的增长幅度,所以,磷化涂层钢丝绳日均使用费用仅为光面钢丝绳的30%左右,使用寿命更长,单位使用成本更低,使用过程中的稳定性和安全性及性价比更高,是光面钢丝绳的升级换代产品,仅供参考