矿用绞车在提升时或放时钢丝绳跳动是什么原因
1、电控调试的性能是否好。如果电控系统调试的参数不当导致发生电流振荡,可能会致使负载速度振荡引起钢丝绳跳动。
2、你使用的减速箱是否为弹簧减速箱?如果是,而且提升机运行的速度正好处在弹簧减速箱共振的区间,发生减速箱振荡,可能会引起速度不稳导致钢丝绳跳动。
3、罐道是否平?如果罐道不平,在经过不平的地方时可能会引起振动。
准确的计算无法告知,但是从钢丝绳的选用方面有以下建议供参考:
1、由于是在水流湍急的河流中,水箱会存在上下和前后摆动的情况,即钢丝绳会收到振荡载荷和冲击载荷,因此对钢丝绳的耐腐性、抗冲击性、耐疲劳性需要慎重考虑,否则都可能导致钢丝绳的提前报废。建议使用镀锌钢芯钢丝绳,而且最好外层钢丝比较粗的钢芯钢丝绳。
2、建议在水箱与钢丝绳连接的地方需要考虑绳径比,因为如果纯粹的考虑连接起来或者穿过所谓的吊耳,可能会由于吊耳的本体直径过小,从而导致与钢丝绳产生接触摩擦和弯曲的部位,对钢丝绳产生极大的冲击力和切力,犹如一把刀一般把钢丝绳撑变形和切断。应该结合钢丝绳的弯曲半径或者滑轮的绳径比合理设计一个带有弧度的导绳槽,这样就可以避免由于冲击力带来的对钢丝绳的破坏。
希望有帮助!
导轨安装时校正不垂直,或使用年代长久导轨磨损、变形或导轨接头处不平,台阶较大。解决方法:导轨不垂直重新校轨,一般安装后的导轨校正难度大,但也应尽最大努力去调整,以求达到标定值,或更换导轨,或重新磨光修平接头处。导轨支架松动或压轨道螺栓松动。解决方法:螺栓松动,拧紧螺母,如支架整体松动,则须重新预埋或焊接。主机机座与承重梁连接固定螺栓松动,运行时窜动而引起下部抖动振荡。解决方法:重新拧紧螺栓,并加锁紧螺母并死。减速箱中,蜗轮与蜗杆间隙不适或研磨不适。解决方法:调整蜗轮蜗杆啮合间隙到规定值。闸车两侧间隙不均,运行时,时擦时不擦,磨损的闸皮在弧度上高低不一致。解决方法:重新调整闸车,使两侧间隙均为0.5~0.7㎜,并两边工作同步,闸皮磨损超标或异常须更换。轿厢底不水平,特别是负载运行时受力不均而强烈抖动。解决方法:调节拉杆螺栓,校平轿底,并注意负载时载荷的均匀分布。轿厢壁、底、顶螺丝松动,运行时窜动并伴有异声。解决方法:紧固所有松动的螺栓。轨距在全高上误差大。解决方法:重新调整,并达到规定的设计要求。钢丝绳间受力不均,钢丝绳抖动异常带动轿厢抖动。解决方法:重新调整钢丝绳受力,并测量使各绳拉力差不超过±5%。安全钳动作后,楔块未完全复位,运行时磨轨。解决方法:重新调整使之复位,并注意间隙和提拉力要完全符合要求。轿顶及绳轮上的轴承内滚珠磨损,运行时有一顿一顿的感觉或反绳轮与两边上梁间隙不一致轻微切槽而发生弹动现象。解决方法:更换轴承,调整好间隙。对重运行时与井道内异物相碰,并传送到轿厢,引起振荡。解决方法:清除异物,使上下运行时无阻碍物。
随着我国经济的迅速发展,电梯市场异常繁荣,年需求4万多台,成为全世界最为活跃的市场。由于我国电梯受日本产品的影响较大,人们对于电梯舒适感的要求越来越高。如何提高电梯运行的舒适感成为各个电梯厂家关注的一个重要问题。
2 选用品质优良、稳定的曳引机
电梯控制系统首先应该说是一个机械系统。电梯运行就是轿箱在导轨上的往复机械运动,由于其载人功能,对其可靠性、振动噪音和舒适感提出了较为苛刻的要求。电梯机械的可靠性由机械设计和材料的选型可以完全保证。轿箱在x、y方向的机械振动完全靠导轨的安装和导靴的加工精度和质量来保证,而z方向的机械振动与曳引机及其驱动电机、变频调速器息息相关。
曳引机是电梯运行的驱动装置,其性能直接关系到电梯运行的舒适感。曳引机的机械间隙对电梯的影响主要体现在电梯在加减速过程中,在电机速率发生变化时,电动运行和发电运行状态将发生切换,造成电梯的振动,极大地影响了电梯的舒适感。在电梯s曲线加减速过程中,一般各有一两次明显失重或者超重感觉,并伴随曳引机发出异响。另外,对于一些改造的双速旧梯用曳引机,由于多次高低速切换的巨大冲击,造成连接套轴中的橡胶垫片严重磨损,也会造成上述现象。因此,电梯厂家对新选型的曳引机的间隙必须提出明确的要求,并在维保时定期检查连接轴的磨损情况。
另外,曳引机内部齿轮或者涡轮涡杆的加工、安装精度差、动平衡调节不好,也会造成电梯在高速时产生振动和噪音。笔者曾经在某个厂家,发现电梯运行的垂直振动特别大,采用了一切办法均无效的情况下,怀疑为曳引机问题,厂家不相信,更换市场上所有品牌变频器,均无改善,更换曳引机,问题得到解决。结果问题是该曳引机生产厂家规模小,检测手段落后,生产的曳引机,一致性难以保证,给电梯厂造成重大直接和间接的损失。因此,曳引机的选择,不能贪图便宜,必须选择技术实力雄厚,检测手段齐全,质量保证体系健全的厂家。还有一点要强调的是,在同样梯速情况下,以选择曳引机减速比大的曳引机为好。因为减速比大,造成的倒溜现象就小,启动舒适感就容易调整。实践证明,同样梯速下,采用6极电机曳引机比采用4极电机的启动舒适感差。本质原因是6极电机比4极电机的启动转矩并没有大1.5倍以上。
3 选用品质优良的驱动电机
在保证曳引机质量的前提下,与曳引机配套的电机的性能也直接关系到电梯的起制动过程的性能,问题主要表现为启动舒适感的好坏。如果电机的启动转矩大,在电梯松闸的时刻产生的倒溜就会很小。目前,在许多变频器的手册中,有严重误导用户的说法。变频器可以达到200%甚至300%以上的启动转矩,实际上都是没有实际意义的。如果一个电机的设计启动转矩mst和最大转矩mmax小,变频器再好,也不会产生大的输出转矩,而且还容易产生速度的波动,造成振荡。
根据异步电机的基本知识,电机的m-n曲线如图1(a)所示,图1(a)中a点为最初启动转矩点,b点为最大转矩点,c点为额定工作点。其中电机的启动转矩mst与电机的转差率s有关,转差大,初始启动转矩大,要提高转差,要求转子电阻rr大,转子电感小,图1(b)示出了转子电阻不同情况下的机械特性曲线。从图1(b)上还可以看出,随着转子电阻增大,最大转矩mmax未发生变化,但是其对应的最大转差sm增大,在同等负载下,转差也增大。这就是进口品牌电梯采用高转差电机的原因。可是目前许多进口品牌曳引机为了降低成本,均配备国产低转差电机,转差频率一般小于2.5hz,其启动性能大打折扣。因此在选择曳引机品牌时,其配套电机的品牌和性能的选择也同等重要。
(a) 机械特性(b) 不同转子电阻情况下的机械特性
图1 异步电机机械特性
4 选用性能优良的变频器
异步电机矢量控制是完全基于电机参数的矢量控制,因此电机参数必须能够进行自动学习。否则,取得不了优越的性能。因此,首先必须选用能够进行电机参数自学习的变频器。其次,变频器必须具有零速150%以上的转矩输出,可以保证良好的启动和停车舒适感。另外,需要非常好的过载能力,110%的额定负载,必须连续运行,特别对于高层电梯,需要满载运行超过30s以上的,更要考虑这一点。一些国外厂家的变频器,100%额定负载,不能够连续运行60s,因此,在用于高层电梯控制的时候,均建议放大一档使用,给用户造成了不必要的经济损失。
选定好变频器后,要做到比较好的舒适感,关键还要调试好变频器的性能及运行曲线。电梯在启动的时候,由于机械导靴有比较大的静摩擦力,可以通过调节启动速度和启动速度保持时间来消除。另外,一般变频器均有速度环pi参数调整功能,通过速度环pi参数调整,可以有效调整变频器的动态响应速度和稳速精度,可提高电梯的启动和稳态运行的舒适感。启动性能与低频pi参数有关,可以先将低频i设定为零或者比较大的值,不考虑平层精度情况下调节kp,增大kp,低频动态响应加快,启动转矩大,但是kp过大,容易引起振荡,启动和停车爬行的舒适感会变差。因此,必须增大kp到电梯在满载、空载情况下,不振荡为临界,然后可以逐步减小i参数,达到启动,爬行均满意的效果。高频pi参数调整原则是,保证启动加速和停车减速过程的超调最小,一般小于2%额定速度,又要保证稳速情况下的速度精度,一般不超过0.001m/s。先将高频i设定为零或者比较大的值,调节k,使参数小于电梯在高频稳态产生振荡的临界参数,然后逐步减小i,使得超调达到要求的指标。对于采用相同曳引机和机械的场合,可以在调好一台电梯情况下,通过键盘参数拷贝来实现复制。上述中,积分时间常数i的单位为时间单位s。特别提醒的是,目前市场上的绝大多数变频器pi参数采用独立的两个数来调整,没有实际物理量概念,此时的i越大,相当于时间常数越小。
对于加减速过程中的舒适感,要通过s曲线调整来解决。一般是加速度和减速度在0.5~1m/s2之间,开始段急加速和结束段急减速可以调整为0.25~0.5m/s3,结束段急加速和开始段急减速可以在0.5~0.9m/s3之间。s曲线的调整还与电梯的场所有关,对于医院、疗养院等对舒适感要求很高的场合,需要减小相应参数,对于办公写字搂等需要高效率的场合,可以适当增大相应参数。结束段急加速和开始段急减速的增大,有利于克服间隙造成的加减速过程的抖动。
5 采用最佳控制时序
图2 电梯控制理想的控制时序图
最佳的控制时序如图2所示,变频器接收到运行命令后,先进入零速运行过程,延时t1,保证电机励磁达到稳态后打开抱闸,同时变频器开始运行,启动速度保持时间t2后是高速、低速到零速,零速运行t3后,在保证惯性影响为零的情况下,关闭抱闸,由于抱闸抱紧需要一定时间,因此必须延迟t4后撤消运行命令。按照此时序,可以保证启动和停车均有理想的舒适感。在艾默生td3100变频器中,t1由f7.00设定,t2由f3.01设定,t3由f7.01设定,t4由控制决定,如果控制器延迟时间不够,td3100变频器将自动延长命令保持时间。
6 其他
6.1 启动补偿
对于1.75m/s以下的中低速电梯,由于运行速度较低,基本不需要启动补偿就可以达到比较满意的程度。对于1.75m/s以上的中高速电梯,如果启动舒适感要求比较高的场合,就必须添加称重装置,进行启动转矩的补偿。一般有两种称重装置,开关量检测和模拟量检测方式。对于开关量检测方式具有成本低,但只能够做到有级,一般安装4个开关,可以在空载和满载之间实现任意4点的准确补偿,但是由于是有级补偿,还不能够做到理想的程度。模拟量传感器可以实现无级补偿,但是存在的问题是模拟量传感器往往随着电梯的使用,其输出会发生偏移,造成补偿错误,效果有时会比不补偿还差,因此需要定期对补偿增益进行调整。
6.2 减振器和钢丝绳的合理选用
许多电梯厂家,对于减振器选用非常随意。实际上减振器对于提高电梯的舒适感有非常重要的作用。减振器一般有曳引机底座的橡胶减振垫、轿箱底部的减振弹簧或橡胶减振垫、轿箱顶部的钢丝绳减振器三种。曳引机底座的减振垫质量和减振效果千差万别,它直接影响到电梯的舒适感,特别是当电梯上行到顶层2至4层启动、停车时,问题将表现的异常突出。轿箱底部的减振器的质量将直接关系到电梯稳态运行的平稳性,如果弹性系数大,特性太硬,将起不到减振作用,会产生高频振动,人体会有麻脚的感觉,严重时,将造成轿箱的高频振动,产生比较大的噪音。反之,将产生低频振荡,造成人体的下沉感。因此必须合理选用。钢丝绳的减振作用与轿箱底部的减振器作用相同,必须根据楼层高度,选用弹性系数合理的钢丝绳,在保证满载情况下,伸缩量符合要求的情况下,达到良好的减振效果。另外在高层电梯上,由于钢丝绳较长,松紧程度一致性差时,容易造成高速运行时钢丝绳的摆动,互相撞击造成轿箱的振动。一个有效的方法就是在钢丝绳末端添加钢丝绳减振器,对于钢丝绳的振动波产生有效的吸收,防止反射而形成差拍现象。
6.3 编码器的合理选用
编码器是电梯变频器闭环的必要器件,其合理选用对电梯的安全、可靠运行产生重大影响。从安装方式上,轴套式更加可靠,但价格相对连轴式稍贵。目前许多采用连轴式编码器厂家,由于标准连轴器在同轴度不好的情况下,很容易折断,可靠性非常差,就自己采用非常简单的连接方式,给电梯的运行带来安全隐患。从接线方式上讲,有推挽输出的和开路集电极输出的,在编码器连线超过5m以上时,建议选用开路集电极编码器,以提高抗干扰能力。
编码器的每转脉冲数一般在300以上就可以保证变频器的正常运行,建议在成本许可的情况下,最好将编码器每转脉冲数提高到1000到2000,可以大大提高电梯的启动舒适感。原因是每转脉冲数越大,启动溜车就容易实现快速检测,从而达到转矩的快速调整,减小溜车。
6.4 控制系统的合理接地
电梯控制系统中,接地是一个影响可靠性的关键问题。由于我国供电的不规范,大多数场合是三相四线制,而非三相五线制,接地问题变得更加突出。在安装调试时首先必须保证控制柜、曳引机及轿箱可靠接地或零,然后是编码器接地。但是要强调的是,目前市场上编码器的规范性较差,有些编码器自身的抗干扰能力差,设计厂家将编码器引线的屏蔽层与编码器外壳连接,这是非常严重的错误。如果用户将编码器屏蔽层与变频器的地相接时,由于两端接地,变频器与电机之间存在电位差,容易产生干扰,轻者造成电梯的低频抖动和随机的过流保护,重者当调试现场曳引机没有接地或者接地不良时,电机的漏电将造成变频器接口板的严重损坏。因此,建议选用屏蔽层与外壳不连接的编码器,实施远端一点接地,可以大大提高系统的可靠性。
6.5 制动电阻的合理选取
制动电阻是用于消耗电梯在发电过程中产生的回馈电能,电阻阻值的选取参考变频器说明书有关内容以100%制动转矩选取,但是电阻功率大小直接关系到体积和价格,许多厂家不知道如何选取,同等功率的变频器电阻全部是一样的,这是存在严重隐患的,因为电阻的功率与楼层的高度是有关的,一个6层楼和一个30层大楼,所用变频器可能均是15kw,但是变频器发电连续运行的时间相差5倍,其功率也需要相差5倍,才可以保证可靠性,延长电阻的寿命。因此电阻的功率应该先按照连续制动计算,然后根据不同楼层高度相应地调整功率。
7 结束语
本文针对曳引机、电机、变频器及运行调试等内容,从电气和机械两个方面,提出了一些提高电梯启动、加速、稳态和减速停车运行过程中舒适感的有效对策,对于电梯厂家、曳引机制造厂家及电梯改造、维护厂家均有一定的参考价值。
有影响。有影响的原因是对于地铁这样的城市大规模地下工程来说,施工前必须清楚地掌握工程沿线建筑物的构造、型式、年代、使用状况等情况,并对工前建筑物进行评估,确定建筑物已有的变形以及抵抗剩余变形的能力。
同时,要预测地铁施工对建筑物产生的影响范围和程度,及时采取相应的处理措施,以确保工程顺利推进。
性能特点
优点
节省土地:由于一般大都市的市区地皮价值高昂,将铁路建于地底,可以节省地面空间,令地面地皮可以作其他用途。
减少噪音:铁路建于地底,可以减少地面的噪音。
减少干扰:由于地铁的行驶路线不与其他运输系统(如地面道路)重叠、交叉,因此行车受到的 交通干扰较少,可节省大量通勤时间。
节约能源:在全球暖化问题下,地铁是最佳大众交通运输工具。由于地铁行车速度稳定,大量节省通勤时间,使民众乐于搭乘,也取代了许多开车所消耗的能源。
减少污染:一般的汽车使用汽油或石油作为能源,而地铁使用电能,没有尾气的排放,不会污染环境。
扩展资料供电方式一般而言,为减低隧道建造成本,大多地下铁会选择使用第三轨供电方式以缩小隧道断面,不过并非绝对。地铁的供电方式主要如下:
架空电缆
架空接触网(又称接触网供电)供应电力,是电气化铁路常用的两种供电网路方式之一,也是无轨电车唯次一个的供电方式。在铁路和城市轨道交通系统中,架空接触网只有导线的一个电极,电力机车通过受电弓取电,再通过金属轮轨回流到电网中。在无轨电车等使用胶轮的系统中,架空接触网有一正一负两根互相平行的接触导线(简称触线),通过两个集电杆取电并形成通路。
架空接触网的悬挂类型大致为三种:简单悬挂,链式悬挂,刚性悬挂。其中简单悬挂和链式悬挂都是弹性悬挂。相应的架空接触网也根据悬挂类型分别称为弹性接触网和刚性接触网。
1、简单悬挂
简单悬挂只有导线,没有承力线,优点是结构简单,支柱高度低,支撑点承受的负荷较轻,一般运用于隧道等低净空的场合。在城市轻轨和无轨电车中,也广泛使用简单悬挂。其缺点是跨度小,悬挂点有硬点,且在运行中导线会上下振荡,不适用于高速铁路。
2、链式悬挂
链式悬挂将导线和承力线之间用悬索连接起来,解决了简单悬挂中跨度小和硬点的问题,因此大量使用在长距离、高速度、大跨度的电气化铁路中。在城市地铁中,如果使用链式悬挂,运行速度有望达到120km/h以上。
3、刚性悬挂
刚性悬挂是以硬质的金属条(通常是铜条)代替软质的导线的新型悬挂方式。随着材料科学和结构力学的发展,刚性悬挂利用了第三轨供电的接触面积大的优点,而克服了钢轨过重无法悬挂的缺点。城市轨道交通从地下路线开到地上路线时,直接与弹性悬挂的路线无缝对接,不用更换机车。
参考资料来源:百度百科——地铁
物探测试、下管、固井作业结束后(或大口径填砾止水)就应立即开展洗井工作,这一环节在地热井成井中尤为重要。常用的洗井方法有机械洗井和化学洗井。机械洗井方法主要有活塞洗井法、高压喷射洗井法、气举法、水力震荡法、气水混合洗井法和潜水泵洗井法。化学洗井方法主要有盐酸洗井法、二氧化碳洗井法、多磷酸盐洗井法和氢氟酸洗井法。
(一)机械洗井法
1.活塞洗井法
活塞洗井法是在水文水井中常用的一种方法。活塞常用小径抽筒制作,下入深度一般为300~600m(视井身结构和储层情况调整),一般用0.65~1.5m/s速度上下提拉,促使井内产生瞬时真空和形成水力冲击,将孔壁泥皮、环空中的泥饼破坏并将含水层中的细小颗粒携入井中,从而疏通含水通道使井达到正常的出水量的目的。这种方法因操作简单,成本低,有一定的效果,一般在较浅的水井中应用。活塞洗井的不利之处在于因巨大的抽吸力会把地层中的细小颗粒大量引向井的四周,以致引起严重的涌砂或堵塞井壁进水通道,甚至损伤井管等。
在地热井洗井作业中一般很少采用活塞洗井,因地热井较深,钻机设备无捞砂滚筒,钻机提升系统多为8~10股钢丝绳,提升速度慢,很难在储层中形成压力激动。
2.高压喷射洗井
高压喷射法是最有效的洗井方法之一,国内外普遍采用这种方法。它能够使过滤器得到全部有效的吹洗,射流扰动附近含水层,造成一定的压力波动,能得到很好的效果,是地热钻井洗井工艺中必不可少的工艺措施。但高压喷射的喷嘴应为近似钻头喷嘴,优化喷射流型,以提高射流的喷射速度,提高洗井效率。
3.气举洗井法
气举洗井法是地热井施工中常用的一种洗井方法,一般采用7m3/min或9m3/min的空压机,通过下入井内300~600m深的风管向井内压入压缩气体,压缩空气与水混合形成密度较小的气水混合液喷出,造成井管内外的压力差,井底压力剧烈激荡,冲击破坏井壁泥皮,诱导地层水涌入井内,携带岩屑颗粒连续悬浮,同时可将孔底沉淀物排出地面,从而达到洗井的目的。
气举洗井法对粉细砂含水层或者含水层颗粒级配虽粗,但内含大量细颗粒及粉细砂夹层,洗井效果明显。关键一点是风管下入深度非常重要,风管如果下的过深,对地层形成过大的压差,极易造成地层砂的紊乱,过滤器外部的钻井液、泥饼等有害物质被地层砂挤牢而无法洗出,增加洗井难度和时间,天津塘沽地热井洗井时就曾经发生过类似情况。建议采取渐进、疏导式洗井。
4.水力振荡洗井解堵技术
该工艺是把水力振荡器对准目的层,在地面将液体泵入井内并通过水力振荡器产生高频水力脉冲波。水力脉冲波可在流体内建立起振动场,以强烈的交变压力用于目的层,在目的层内产生周期性的张应力和压应力。对岩石孔隙介质产生剪切作用,使岩石孔隙表面的粘土胶结物被振动脱落,解除孔眼的堵塞。对堵塞于近井地层孔隙中的杂质,在脉冲振荡波的作用下,杂质与孔隙间的结合力将在疲劳应力下遭到破坏,使其振荡脱落,并在洗井时被排出,解除目的层杂质堵塞,恢复近井带地层渗透率,达到水井正常产水量或回灌量的目的。
国内常用的赫姆霍尔兹(Helmholtz)腔形水力振荡器在油田广泛应用。同时得到启发,使用这项工艺将有助于在将来回灌井施工过程中采用这项新技术解决地层的堵塞问题。
通过近年来工作实践,分析、对比各种洗井方法的实际效果,并进行筛选使其得到优化和规范。如天津地区新近系馆陶组地热井主要洗井步骤如下:
1)首先用清水将井内泥浆置换干净
2)打入10~15m3浓度为1%的三聚磷酸钠浸泡过滤器部位24小时(对该溶液按1%,1.5%、2%浓度进行溶解试验,结果1%浓度效果最好)
3)下入高压喷射喷头,高压冲洗过滤器部位并产生振荡和压力波动达到破坏过滤器部位的堵塞物或泥饼等吸附杂质,达到清洗的目的
4)按照空压机洗井程序,先下入钻杆450m,用气举产生负压的方法,诱导地下热储层水进入井内排出井外而达到洗井的目的。然后下入钻杆600~700m依次气举洗井,待水清砂净后,洗井工作结束。
(二)化学洗井法
1)盐酸洗井原理是盐酸与含水层(段)孔(裂)隙内及井内的碳酸岩屑、岩块、含钙质成分的其他杂质发生反应,生成可溶性盐类、气体或其他可溶于水的物质,从而疏通渗水通道。
2)二氧化碳洗井是将二氧化碳液体送入井中,化学反应原理除和盐酸洗井法相同外,还有物理作用,由于压力降低及其增温后迅速气化膨胀,在短时间内其体积增大数十倍至数百倍,这时二氧化碳以强大的高压气流喷出井口,使井产生强大的内向激流和外向激流(前者发生之后的瞬间),使堵塞于孔(裂)隙中的物质在外向激流的作用下随二氧化碳气流冲出,被携带出地表。
3)多磷酸盐洗井法常用的试剂有:六偏磷酸钠[(NaPO3)6]、三聚磷酸钠[Na5P3O10](又称五钠)、焦磷酸钠(Na4P3O7)(又称四焦磷酸钠)和磷酸三钠(Na3PO4)等。多磷酸盐是配合物的一种,多磷酸根阴离子配合泥浆中的Ca2+,Mg2+,使其转化成惰性离子不再与别的离子化合沉淀,本身亦不会聚结沉淀,因而它可破坏泥浆中的网状结构,降低表面张力,加速井壁泥皮活化,使其呈分散和悬浮状态。
4)氢氟酸(土酸)洗井法是利用氢氟酸与孔(裂)隙中的硅质岩屑发生反应,生成可溶性盐类物质及气体,从而达到解除孔(裂)隙堵塞、扩大渗水空间的目的。
总之,化学洗井法是应用化学成分同冲洗液中的成分进行化学反应(也包括综合反应),以达到破坏钻井施工中形成的假孔壁及孔壁外的泥浆,使泥皮与泥浆脱离井管及含水层。有利于在洗井中排出井外。优点是选用易溶于水的化学试剂物质成分,与孔壁及泥浆反应均匀,可使整个受侵害的含水层段都被清洗。它解放了钻探中冲洗液的限制,无论什么样的冲洗液,只要选用相应的化学试剂都可以达到破坏的目的,这样有利于复杂水文地质条件下钻孔的施工。同时,化学试剂洗井不破坏含水层的原始结构,能保持含水岩层原始的渗透系数。但化学试剂洗井的不足之处是洗井前需做试验,试剂投放困难以及成本较高。
(三)联合洗井法
为了做好洗井改进工作,在成井工艺上应采取一些技术措施。首先在钻进过程中改进钻井液性能,减少对热储层的渗入和堵塞伤害然后在下管前采取通井破壁措施,人为去除滤管与储层之间的泥皮在洗井之前,需用清水将井内钻井液替换干净,以降低对地层造成的压差最后采用联合洗井方法。联合洗井方法有两种方式。方式一是用两种或两种以上不同的机械洗井法组合,同时或先后相互配合,彼此可以扬长补短,从而克服某个单独洗井方法的不足,明显提高洗井工作效果。如孔隙型较浅的地热井(小于1000m)一般采用拉活塞和气举洗井法较深的地热井(1000~2000m)一般采用高压喷射和气举法洗井。如岩溶裂隙型地热井一般采用气举法洗井,必要时再采用盐酸或二氧化碳洗井法。方式二是用化学试剂洗井与机械洗井结合,化学试剂首先破坏井壁及泥皮,再用气举等机械方式冲洗,这是目前洗井中较好的方法。
地热井一般比较深,井径小,过滤管相对较长,洗井时激动压力影响到储层时衰减较大,如果洗井方式或洗井强度没有增大、变化,会造成部分过滤通道没有完全打开。这时抽水虽然达到水清砂净,但是一种假象,其表现在降深大,水温低,水位恢复慢,单位涌水量偏小。确定洗井是否彻底,应与周围同层地热井水温、水量、水位动态情况进行比较,上下浮动范围很小即可,且没有持续上升或下降趋势(供水水文地质勘查规范,2001)。