风力发电机叶片转动的原理
旋转接头 叶尖液压油缸的油管安装在齿轮箱的低速轴法兰上的油分配器上,一根通过主轴的可转动的不锈钢管一端与油分配器相连,另一端与旋转接头连接,液压站叶尖油管也与旋转接头连接。当叶轮转动时,主轴内的不锈钢管随着转动,旋转接头与不锈钢管的接头也随着转动,而与液压站叶尖油管连接的外圈不动。气动刹车由液压系统控制,其工作原理为:当风力发电机处于运行状态时,叶尖扰流器作为叶片的一部分起吸收风能的作用,液压系统提供的压力油通过旋转接头进入安装在叶片根部的液压油缸,压缩和叶尖阻尼板相连的弹簧使叶尖阻尼板和叶片主体平滑地联为一体,在正常停机时,液压系统压力下降,叶尖的液压压力减小,叶片在离心力和弹簧机构的共同作用下,叶尖被甩出并沿转轴旋转大约74度,产生阻尼力矩,从面使叶轮的转速迅速下降。在过速状态下,离心力通过钢丝绳使液压缸上压力增加,导致储压罐(压力升高;当压力超过设定值时,发信号停机;叶尖甩出,当压力超过防爆膜的设定值时,防爆膜被冲开,系统泄压,叶尖闸动作停机。
小型风力发电机介绍
一,小型风力发电机的使用条件
小型风力发电机一般应在风力资源较丰富的地区使用。即年平均风速在3m/s以上,全年3-20m/s有效风速累计时数3000h以上;全年3-20m/s平均有效风能密度lOOW/m2以上。在选择使用风力发电机时,要做到心中有数,避免盲目性,这样才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。
应该指出的是,在风力资源丰富地区,最好选择风机额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试验证明,风轮的转换功率与风速的立方成正比,也就是说,风速对功率影响最大。例如,在当地最佳设计风速为6m/s的地区,安装一台额定设计风速为8m/s的风力发电机,结果其年额定输出功率只达到原设计输出功率的42%,也就是说,风力发电机额定输出功率较设计值降低了58%。若选用的风力发电机额定设计风速越高,那么其额定功率输出的效果就越加不理想。但也必须指出,风力发电机额定设计风速偏低,其风轮直径、电机相对要增大,整机造价相应也就加大.从制造和产品的经济意义上考虑都是不合算的。
二,小型风力发电执使用的一般要求
目前,小型风力发电机都采用蓄电池贮能,家用电器的用电都由蓄电池提供。所以,用电时总的原则是,蓄电池放电后能及时由风力发电机给以补充。也就是说,蓄电池充入的电量和用电器所需消耗的电量要大致相等(一般以日计算)。下面举一例说明这一问题:某地区使用了一台风力发电机,额定风速输出功率为IOOW,假设,该地区某日相当于额定风速的风力吹刮时数连续为4h,则该风机日输出并贮存到蓄电池里的能量为400Wh。考虑到铅蓄电池的转换效率为70%,则用户用电器实际可利用的能量280Wh。如果该用户使用的电器有:
(1)15W灯泡两只,使用4h,耗能为120Wh;
(Z)35W电视机一台,使用3h,耗能为105Wh;
(3)15W收录机一台,使用4h,耗能为60Wh。
以上总耗能为285Wh。
这样,用电器日总耗能比风力发电机所能提供的能量超出了5Wh,也就是出现了所谓的“入不付出”用电;这种入不付出的用电,将会使蓄电池处在亏电的状态下工作。如果经常长时间地这么用电,将会使蓄电池严重亏电而损坏,缩短其使用寿命。
上例,是假定风力发电机在额定风速状击下的用电情况,而实际上,由于风的多变性,间歇性,风既有大小的不同(风速)又有吹刮时间长短的不同(风频)。所以,在使用用电器时要做到风况好时可适当多用电,风况差时少用电。这就需要用户在使用时认真总结经验。
另外,有条件的地区和用户可备一台千瓦级的柴油发电机组,当风况差的时候给蓄电池补充充电,做到蓄电池不间断地供电。
三,小型风力发电机的合理配套
小型风力发电机发出的电能首先经过蓄电池贮存起来,然后再由蓄电池向用电器供电。所以,必须认真科学地考虑,风力发电机功率与蓄电池容量的合理匹配和静风期贮能等问
题。目前,小型风力发电机与蓄电池容量一般都是按照输入和输出相等,或输入大于输出的原则进行匹配的。即:100W风力发电机匹配120Ah蓄电池(60Ah2块);200W风力发电机匹配120-180Ah蓄电池(60或90Ah2块);300W风力发电机匹配240Ah蓄电(120Ah2块);750W风力发电机匹配240Ah蓄电池(120Ah2块);1000W风力发电机匹配360Ah蓄电池(120Ah3块)。
实践证明:如果匹配的蓄电池容量不符合风力发电机发出能量的要求,将会产生下列问题:
(1)蓄电池容量过大时,风力发电机发出的能量不能保证及时地给蓄电池充足电,致使蓄电池经常处于亏电状态。缩短蓄电池使用寿命。另外,蓄电池容量大,价格和使用费用随之增大,给经济上也造成不必要的浪费。
(2)蓄电池容量过小时,会使蓄电池经常处于过充电状态。如因充足电而停止风力发电机的工作会严重影响风机工作效率。蓄电池长期过充电将会使蓄电池早期损坏,缩短使用寿命。
另外,小型风力发电机的合理匹配,用电器的套配也是一项可忽视的内容。在选配用电器时也应按照蓄电池与风力发电机的匹配原则进行。即选配的用电器耗用的能量要与风力发电机输出的能量相匹配。但应指出的是,匹配指标所强调是“能量”,不要混淆为功率。在选用用电器时,还必须注意电压制的要求,目前,小型风力发电机配电箱上配有12V、24V和电视机专用插座,用户使用时,要针对用电器所要求的电压值选用相应的插座,电视机应专门插在电视机插座上。
如果使用的是交流用电设备,则必须备置能够满足其功率要求的“逆变器”将蓄电池的直流电转变成电压为220V,频率为50Hz的交流电才能使用。
第二节 小型风力发电机安装场址的选择
小型风力发电机安装场址的选择非常重要。性能很高的风力发电机,假如没有风,它也不会工作,而性能稍差一些的风力发电机,如果安装场址选择得好,也会使它充分发挥作用。关于小型风力发电机的选址条件包含着非常复杂的因素,美国等一些国家,特为此出版了有关风力机场址选择的专著。原则上,在一年之中极强风及紊流少的地点应算最好,但有时很难选出这样的地点。
一、场址选择原则
1.场址应选择风能丰富区前面己介绍,风力发电机安装地点的年平 均风速越大越好,其大体上
数字是:年平 均风速3m/s以上,3-20m/s有效风速累计时效3000h以上,全年3一20m/s平均有效风能密度100W/m2以上。只要能满足第一个条件,小型风力发电机在经济上便可认为是合算的。
2.场址应具有较稳定的盛行风向。盛行风向是指出现频率最高的风向,气象上风向一般用16个方位表示(图4-1)。每个方位箭头的长度和数字是该风向的平均风速,并可形象地绘制出风玫瑰(图4-2)。
从风玫瑰图中看出,盛行风向为西南风(平均风速11.7m/s)、南西南风(平均风11.5m/s)和东北风(平均风速5.9m/s)。我国是季风较强的国家,不同季节盛行风向还要变化。选址对希望盛行风向较稳定,便于考虑地形的有利影响。
3.风机高度范围内“风切变”要小(风剪切要小) “风切变”是指短距离内风速、风向的较大变化。图4-3所示为平顶山脊顶的风切变,图中的影区说明因气流分离使风速下降,分离区上部为强切变区。风机如安在此影区,叶片将在不等速风中旋转,叶片受载不均匀,
图4-1 风向的16个方位图
图4-2 风玫瑰图
降低性能,缩短风机使用寿命。所以风机应避开此强切变区,安在迎风坡上,或提高塔架。
4.应考虑气象因素的影响
(1) 紊流。所谓紊流是指气流速度的急剧变化,包括风向的变化。通
常这两种因素混在一起出现。紊流能影响风力发电机功率的输出,同时使整个装置振动,损坏风机。小型紊流多数是因地面障碍物的影响而产生的,因此在安装风力发电机时,必须躲开这种地区。
(2) 极强风。海上风速可达30m/s以上,内陆有时也大于20m/s时称为极强风。风力发电机的安装场址当然要选择风速大
图4-3 平顶山脊顶的风场变
的地方,但在易出现极强风的地区使用风机,要求机组具有足够的强度,一旦遇有极强风,风力发电机便成为被袭击的对象。
(3)结冰和粘雪。在山地和海陆交界处设置的风力发电机,容易结冰和粘雪。叶片一旦结了冰,其重量分布便会发生变化,同时翼形的改变,又会引起激烈的振动,甚至发生破坏。
(4)雷。因为风力发电机在没有障碍物的平坦地区安装得较高,所以经常发生雷击事故,为此风机最好增设防雷装置。
(5)盐雾损害。在距海岸线10-15km以内的地区安装风力发电机,必须采取防盐雾损害的措施。因为盐雾能腐蚀叶片等金属部分,并且会破坏装置内部的绝缘体。
(6)尘砂。在尘砂多的地区,风力发电机叶片寿命明显缩短。其防护的方法,通常是防止桨叶前缘的损伤,对前缘表面进行处理。可是尘砂有时也能侵入机械内部,使轴承和齿轮机构等机械零件受到破坏。在工厂区,空气中浮游着的有害气体,也会腐蚀风力机的金属部分,应加以注意。
二,平坦地形的场址选择
根据能同时表示风向和风速关系的风玫瑰图,如果在风向最多的上风侧没有障碍物,一般都可以认为这个地点为平地。所谓在平地上安装风力发电机的情况,应考虑以下两个条件:
(1)以设置地点为中心,在半径为1km的圆内,应没有障碍物。
(2)假使有障碍物时,风力机的高度应为障碍物最高处高度的三倍以上,这个关系如图4-4所示。此条件极为严格,但对小型风力发电机可以放宽些(例如也可以把半径定为400m)。
三,山脊或山顶地形的场址选择
山脊和山顶有自然的高塔作用,并且气流随着靠近山脊,由于风洞效应,气流近似为流线而得到加速,能量也随之增大。如图4-5a所示。可是,风向和山脊构成的方向对风的加速有很大的影响,主风向和山脊构成的方向成直角的情况最理想。否则,随地形风的加速作用逐渐变小。
图4-5b表示了在理想山脊上风速的分布情况。风速通常在山脊的根部减到相当小,随着往山顶移动而逐渐增大,到山顶最大。因而,安装风力发电机时,如不是在山脊的中点以上,便不会得到增大风速的效果。可是,若山脊的后面正是风向引起紊流的地方(图4-
图4-4 在平地上安装风力发电机
图4-5 风在山脊和和山顶的加速效应
5a),则最为理想的地方应彼凳巧蕉ァ?/FONT>
四,建筑物上面或附近地形的场址选择
虽然人们都希望把风力发电机安装在平坦开阔地方的塔架上,但在住宅附近、城市中心及其周围,有时,不得建在建筑物的上面。在这种情况下,必须了解建筑物对气流有什么影响,使输出功率发生什么变化。图4-6反映了建筑物对气流的影响,气流在建筑物的后面会形成小的紊流,而在建筑物的周围形成马蹄形的气流。在建筑物的上风侧设置风力机时,至少也要保持具有建筑物高度2倍的间距;在下风侧设置时,至少要离开建筑物高度10倍以上的间距;在建筑物上面设置时,风机高度必须使建筑物高度的2倍以上,如图4-7所示。
图4-6 建筑物周围的气流 图4-7 在建筑物上安装风机的要求
第三节 小型风力发电机的安装
一.安装准备
(1)安装小型风力发电机装箱清单对准备安装的风力机逐一进行清点验收,清点验收合格后可进行下步工作。
(2)安装前仔细阅读小型风力发电机使用说明书,熟悉图纸,掌握有关安装尺寸和全部技术要求。
(3)千瓦以上风机的安装应聘请生产厂方技术人员或有关技术人员予以指导。必要时成立安装小组,一切安装、施工活动,由安装组长统一指挥。
(4)按使用说明书的要求准备安装器材和必要的物资(如水泥、杉本、牵引绳等)
(5)安装时应严格按照使用说明书的要求和程序进行。
安装完后要组织验收,经全面检查,认为符合安装要求和标准后,才能进行试运转,并投入使用。
二,安装工作技术规程
小型风力发电机的安装分百瓦级风机和千瓦级风机的安装。百瓦级风机因结构小巧,重量也轻,一般3-5人便能竖起。千瓦级风机因结构重量较大,安装时需用起吊滑轮和绞盘。为使安装工作安全地顺利进行,特制定以下技术规程。
(1)安装塔架所使用的杉木,质地要结实。绳索的强度要符合要求,安全系数一定要大,其长度要有适当的余量。起吊操作时要规定信号,做到统一指挥。
(2)风力发电机主要零部件的安装(如起吊零部件等)要听从统一指挥。操作人员不准站在塔身下或正在举升的零部件下面,以防意外。
(3)在上塔架顶部安装时,操作人员必须系好安全带或加装其他保护装置。另外,不
许手中或身上携带工具或零部件,以免不慎落下打伤人或造成损坏,塔架上部操作人员所使用的工具和零件,应统一用绳索吊上。
(4)安装风力发电机的工作,只能在风速不超过4m/s(三级风)的情况下进行,以保证操作安全。
(5)用绞盘起吊时,应一圈挨一圈地均匀地盘绕,否则外圈绳索容易从内圈滑下,致使吊件突然下落。起重绳绕在绕盘上时,也不要使绳做纵向扭曲,因为绳子扭曲后,一是通过滑轮时不容易通过,二是会降低其抗拉强度。
(6)安装风轮时,必须事先用绳索将风轮叶.片牢固地绑在塔身上,以免风轮被风吹动旋转而碰伤安装操作人员。
(7)风力发电机安装好并检查无误后,可进行试运转。试运转前,塔架上的人员必须下来并离开塔架,以免风向变化时,风轮旋转或发生意外事故。
三,百瓦级小型风力发电机的安装
百瓦级小型风力发电机安装一般包括:立柱拉索式支架的安装、回转体的安装、尾翼和手刹车的安装、机头的安装、竖立风机、电器连接等内容。
1.立柱拉索式支架的安装 具体安装步骤如下:
第一步,立柱本身的安装。考虑到便于运输,立柱制造时一般都设置三节。其连接方法一种是45°角插接,另一种是法兰盘对接。安装时打开包装箱,如是45°角的插接杆,将插头处涂上防腐油,逐个插好,如是法兰盘对接杆,将每组杆法兰盘对准上好螺栓,放好弹簧垫拧紧即可。
第二步,选择风机安装的中心位置。IOOW和200W风机只将风机底座放在中心位置上,并用两个铁钎将底座钉牢即可.300W和750W风机底座的安装必须挖地基并浇灌混凝土,基础坑尺寸为0.4×0.4×0.5;混凝土比例为水泥:砂子:石子=1:2:3。底座螺栓应高于底座上平面30-35mm,螺扣要予以保护。灌注后凝固24h方可进行安装。
图4-8 四根拉索定及底座与立柱连接示意图 图4-9 力柱用木桩顶起
第四步,有手刹车的机型,此时应将手刹车部件(如绞轮、钢丝绳等)安装好,钢丝绳由中立柱长孔处穿入立柱中心并从上立柱端穿出固定好。
2.回转体的安装 回转体的安装步骤如下:
(1)带有外滑环和手刹车机型回转体的安装:
第一步,将立柱上端的光轴位置涂上黄油脂,并将压力轴承放在顶端轴承座内涂好油。
第二步,将外滑环套接在回转体长套的下端止口处,并用螺钉固定好,然后将上好外滑环的回转体的长套从下口套入上立柱的光轴上,套接时同时将刹车钢丝绳也穿入回转体长套里,并从上端中心孔取出固定好。此时注意压力轴承的位置,保证使压力轴承在立柱的上端轴承座与回转体上端轴承盖上的轴承座相吻合,使压力轴承压接在两轴承座中间并运转自如,如图4-10所示。
图4-10 回转体的安装
不带外滑环和手刹车机型回转体的安装:
第一步,同上。
第二步,将输电线(防水胶线)穿入回转体中心孔(导线穿孔),然后把回转体套在上立柱的光轴上。根据机型不同,有的回转体上装有限位螺丝或限位弯板,其作用示防止回转体在立柱上窜动。安装时注意防止限位螺丝钉拧紧,应保证限位的同时,能够在立柱光轴上灵活转动。
3.尾翼和手刹车的安装 尾翼出厂时,尾翼板和尾翼杆已经作为一个整体连接在一起,安装时应检查一下其各连接部位的螺丝钉是否紧固。检查好后,将尾翼杆前端长轴套放入回转体尾翼连接耳内,对准销孔并插入尾翼销轴,销轴下部穿好开口销,使其转动灵活,如图4-11所示。
手刹车的安装。在立柱拉索式支架安装的第四步已经完成了手刹车下部绞轮的安装,此时主要是上部的安装,即将刹车绳从回转体上端引出。一种机型(如FD2-100型)在回转体上平面用压夹固定一个较长的弯形弹簧运动轨道,弹簧轨道固定好后,再将手刹车钢丝绳从弹簧里穿过去与尾翼杆上的连接螺丝钉相连接,如图4·11a所示,另一种机型(FD2.1-0.2/8型)在回转体出口处和上平面右边角处安装二组瓷套作为钢丝绳的运动轨道,然后再将手刹车钢丝绳从瓷套里穿过去与尾翼杆上的连接螺钉相连接,如图4-llb所示。另外,小型风机刹车机构还有一种为抱闸摩擦式刹车,如FD1.5-100型风机为此种刹车,安装时主要是保证刹车带与刹车毂的间隙,并在竖机后检查并保证刹车动作灵活。
4.机头的安装 机头的安装内容有发电机的安装和风轮的安装。
(1)发电机的安装。发电机在出厂时已经是装配好的整体,安装时只需把发电机放在回转体上平面上对准四个螺栓孔,上好螺栓加弹簧垫圈拧紧,并把发电机引出线插头与外滑环引出接线插座对接牢固,外滑环弓1出线与输电线(防水胶线)插接好。如没有外滑环的机型须将发电机的引出线与输电线.(防水胶线)按正负极连接好即可。
(2)风轮的安装。小型风力发电机风轮一般分两类,二类是定桨距风轮,另一类是变桨距风轮。
定桨距风轮的安装:如果风轮为两片分开的叶片,安装时只把两叶片桨杆轴部插入轮毂上的安装孔中,对准键槽孔,放好弹簧垫,拧紧螺母即可,如FDl.5-100型风机。但要注意两片分开的叶片出厂时都是选配好的,安装时不可与其他风叶混淆,以防破坏风轮平衡。
如果两个叶片为整体式或安装好的总成件,安装时只需把风轮轴孔套在发电机轴
上,然后放好弹簧垫,拧紧螺母即可。一般电机轴都带有1:10锥度,所以不会装错,如FD2-100型风机为整体叶片。
如果是三叶片风轮,风抡出厂时,叶片和前、后夹片为散件包装,三个叶片都是选配好的,每个叶片根部(柄部)有三个螺栓孔,安装时只需与前后夹板相应的三孔对准螺栓并放好弹簧垫拧紧。风轮夹板(轮毂)设有1,10的锥套,套在发电机轴上,放好弹簧垫,用螺母拧紧即可。
变桨距风轮:目前使用的变桨距风轮出厂时均为装配好的整体。在安装时不要拆卸,只需把风轮的锥形轴套套在发电机轴上,上好弹簧垫,拧紧螺母即可。注意变桨距风轮在安装时应检查叶片是否有卡滞现象,方法是分别扭动两只叶片,如果叶片活动平稳即符合要求。
5.竖立风机 以上内容全部安装完毕,应做一次认真的检查:看固定部位是否拧紧、转动部位是否灵活、刹车杆件和各连接部位是否可靠。输电线(防水胶线)正负极是否接好,做好标记。目前,制造厂将输电线接全部采用插接的方式连接,只要插进去,正负极就不会搞错。以上全部无误后,即可立机,立机的方法和步骤如下:
(1)100W,200W机型立机,只要两人拉牵引绳(四根拉索的其中一根),另外两个人,一人在下扛机身,另一个人用双手举机身,这样四人共同协作,便能很顺利地将风机立起,如图4-12所示。
(2)300W,750W机型立机,三根拉索上部与风机上立柱连接好,下边先将两根拉索与地锚连接固定,另一根作牵引绳,牵引时可用人拉(4-5人),也可用小型拖拉机拉,然后再用4-5人支撑机身。边牵引边扶立,直至立起为止。
图4-12 竖立100W.200W风机示意图
风机立起后,调整拉索紧线器,使风机立柱保持铅直位置,并使每根拉索均处于拉紧状态。
6.电器的连接
(1)发电机输电线连接:输电线用压夹固定在立柱上,固定好之后,从立柱底部将输电线架起并引进用户家中。
(2)输电线与配电箱插接:配电箱一般都设有发电机输电线插座,连接时,将输电线插头插入配电盘上的发电机输电线插座里即可。
(3)蓄电池的连接:蓄电池的连接应严格遵守发电机的电压制。小型风力发电机的电机有的设计为28V,有的则为42V和110V。每台风机有两块电池为一组,也有三块以上为一组。连接时应按照使用说明书的要求进行。蓄电池一般为串联连接,如100W和200W风机,大多为28V 电压制。两块60AH的蓄电池应串联连接,如图4-13所示。
(4)用电器的连接:目前小型风力发电机的用电器主要有灯泡、电视机、收录机.小型冰箱和洗衣机等。一般风机配电箱上都设有直流12V、24V和交流220V电压制插座,在使用用电器时应严格按照用电器所要求的电压制选用配电箱上的相应插座,不能插错。
图4-13 风机蓄电池连接示意图
风电机组主要分为三类①双馈式变桨变速机型,是目前大部分企业采用的主流机型;②直驱永磁式变桨变速机型是近几年发展起来的,是未来风电的发展方向之一;③失速定桨定速机型是非主流机型,运行维护方便。
发电机是风电机组的核心部件,负责将旋转的机械能转化为电能,并为电气系统供电。随着风力机容量的增大,发电机的规模也在逐渐增加,使得对发电机的密封保护受到制约。发电机长期运行于变工况和电磁环境中,容易发生故障。常见的故障模式有发电机振动过大、发电机过热、轴承过热、转子/定子线圈短路、转子断条以及绝缘损坏等。据统计,在发电机的所有故障中,轴承的故障率为40%,定子的故障率为38%,转子的故障率为10%,其他故障占12%。
根据发电机的故障特点,采用的诊断方法主要是基于转子/定子电流信号、电压信号以及输出功率信号等状态检测手段。POPA等借助定子电流和转子电流信号的时域分析得到其幅值信息,再通过FFT得到电流信号的谐波分量,最后通过判断谐波分量的变化实现对发电机3种模拟故障的识别。WATSON等借助连续小波变换,对输出功率信号进行分析,识别出了发电机转子偏心故障和轴承故障。DJUROVIC等研究了稳态状况下,短时傅里叶变换方法在发电机定子开环故障中的应用。通过对比发现,虽然基于定子电流和瞬时功率的诊断方法均可识别出故障,但瞬时功率信号中包含了更多的故障信息。发电机的转子偏心现象是轴承过度磨损或其他故障隐患的表现。基于输出电流、电压、功率等信号的检测方法是识别转子偏心故障的有效手段。此外,MOHANTY等针对多级齿轮箱研究通过解调异步发电机的电流信号来诊断齿轮箱故障。
另外,BENNOLrNA等在变转速下建立了基于多项式的双馈式异步发电机线性与非线性数学模型,利用故障特征分析法检测出了转子偏心故障,但是此方法也仅能判断发电机出现故障类型,而不能准确找出故障源。YANG针对同步发电机为消除变转速的影响,提出了基于转矩和主轴转速的判断准则。模拟定子绕组线圈的短路,对发电机定子绕组电流/功率信号,先用离散小波去除噪声,再使用连续小波提取特征频率,有效地识别出了故障。
3.风力发电机组叶片故障
风力发电机组安装在野外比较恶劣的环境,经常处于无人值守的状态,对其运行状态的监测尤其重要。由于环境因素,机体各部件故障率较高,叶片作为风力发电机组的主要部件之一,对其故障监测十分必要,一旦出现故障,要是不及时处理,叶片就会很快的断裂。轻则造成停机,重则烧坏机组,影响正常供电,造成不可挽回的损失.
风机叶片故障类型可分为裂纹、凹痕和破损等,叶片的振动形式主要包括摆振、挥舞振动、扭转振动和复合振动,叶片的故障信息通常依靠现场监测的震动信号进行反应。在风力发电机组故障中,突变信号和非平稳信号往往会伴随故障存在。理论上讲,当叶片出现裂纹时,振动信号中会伴随有较强的高频冲击波,并且这些离散的故障信号是可能存在任意频段内的。
故障诊断常用方法有时域分析方法和频域分析方法,时域分析方法主要研究不同时刻信号之间的关系,对于某些有明显特征的故障信号,可做出定性分析。频域分析方法通过研究波形的谐波分量来识别多种频率成分。这两种方法都具有单一性,而小波分解方法具有局部化分析的功能,在时域和频域都能快速定位。小波分解在低频部分,可以采用宽的时间窗,频率分辨力则大大增强在高频部分则采用宽的时间窗,频率分辨力则会减弱。小波分解方法的这种特性非常适合非平稳信号的故障诊断。
4.轴承故障检测
风电机组主要零部件的可靠性研究表明,在风电机组的故障中电气和控制系统故障率最高,传动系统如齿轮箱、主轴承等故障率相对较低。但进一步的研究表明电气和控制系统的故障容易排除,停机时间短,并且也不需要吊车等辅助工具。从机组故障引发的停机时间、维护费用和是否容易造成的继发故障等角度分析,与电气和控制系统相比,机械传动系统的状态监测与预警维护更为重要。
轴承是旋转机械的关键部件,也是风电机组机械传动系统的核心部件,机械传动系统的非轴承如齿轮箱、桨叶等故障,亦多是由轴承故障引起或可在轴承的运行状态中得到反映。因此对轴承的运行状态进行实时监测,对整个机械传动系统的故障诊断和运行维护具有重要的意义。
风力发电机用轴承大致可以分为四类:变桨轴承、偏航轴承、传动系统轴承(主轴和变速箱轴承)和发电机轴承。偏航轴承安装在塔架与座舱的连接部,变桨轴承安装在每个叶片的根部与轮毂连接部位(除部分小功率兆瓦级以下的风力发电机为不可调桨叶,无变桨轴承外,每台风力发电机设备用一套偏航轴承和三套变桨轴承),主轴连接轮毂和齿轮箱,都是低速重载轴承,其中偏航和变桨轴承还是不完全旋转轴承。齿轮箱为增速箱,将叶轮的低速变为输入到发电机的高转速,二者的轴承与通常的发电机组除了在使用寿命和可靠性方面要求较高,并无其他不同。
目前的实际应用的风电轴承运行状态监测与故障识别的方法主要有基于数据采集与监视控制系统(SCADA,Supervisory Control And Data Acquisition)的方法,基于振动分析、润滑油检测的方法,基于声音、红外图像的方法以及多种方法相结合等方法。
4.1 基于SCADA的方法
对于运行状态监测,风电机组与通常的发电机组相比有自己的特点:通常的火力或水利发电机机组的单机功率比风电机组大的多,机组数目少,因此状态监测点少,而一个风电场通常几十台甚至上百台风电机组,因此需要的传感器数目和采集与通讯的数据量比通常的发电机组要大的多,增加了风电机组的成本和复杂性,也限制了监测系统的应用普及。如果能利用机组已有的SCADA数据,不装配额外的传感器获取机组轴承的运行状态,是最经济的方法。
研究表明发电机的机械故障可以由感应电机的终端发电机的输出反应出来,通过对感应电机的电压、电流和功率的稳定功率谱分析,对发电机的轴承、转子的断条、气隙偏向等故障进行故障监测。对于传动轴承故障诊断,类似的研究还比较少,用对电机电流解调的方法监测多级齿轮箱的故障,用定子电机电流识别齿轮箱滚动轴承的故障,由于电流的非平稳特点,引入了小波包变换的方法。在缺少振动传感器的情况下,由SCADA参数反应的传动系统轴承的运行状态不够具体。由多所大学、咨询机构和风电机组制造商合作的欧盟项目ReliaWind’在主轴承、齿轮箱和发电机轴承处安装振动传感器,通过将每十分钟的振动平均数据和SCADA数据参数相结合判断风电机组的运行状态。
4.2基于振动的方法
基于振动的方法在旋转机械和其他发电机组的故障诊断中已广泛应用,且取得了很好的效果。风电机组的发电机和齿轮箱高速轴承可以应用现有的基于振动的故障诊断技术,只是由于风电机组的负载是非平稳的变量,常用的时域和频域FFT分析方法的性能会受影响,在信号处理的方法上需要改进。而对于主轴承和齿轮箱低速轴承,由于轴承的转速低(每分钟10—30转),计算出的故障频率低,而高通滤波器会将3Hz以下的频率过滤掉,再加上受到环境噪声的影响,使得频谱分析效果很差甚至无法进行;而在冲击故障的瞬态性问题中,由于每次故障冲击的间隔较长,使用冲击法很难准确地检测到故障信号;同时由故障点产生的冲击响应的频率较低,不能激励起较高的频率成份。以上原因限制了振动监测主轴承运行状态的效果,但可从其运行情况反映叶片的运行状态,比如识别其是否平衡,从而判断其是否遭受冰冻等事故。
4.3基于润滑油液的方法
资料显示轴承的故障多于润滑不良有关,主要原因有 1)由于大气温度过低,润滑剂凝固,造成润滑剂无法到达需润滑部位而造成磨损;2)润滑剂散热不好,经常过热,造成润滑剂提前失效而损坏机械啮合表面;3)滤芯堵塞、油位传感器污染,润滑剂“中毒”而失效引起的故障有粘附磨损、腐蚀磨损、表面疲劳磨损、微动磨损和气蚀。这些磨损出现之后,轻则金属微粒会污染润滑剂,影响功率传递,产生噪音,造成齿面严重磨损或断裂,轴承内外圈或滚珠损坏,严重的使机组无法转动而彻底停机。目前的油液监测系统主要是振动齿轮箱的润滑油液,对于润滑的部件尚没有在线监测的方法。振动监测室风电轴承监测的趋势,但由于风电负载和风力的不稳定影响了传统的时域和频域FFT分析方法的效果,亟需引入新的非平稳信号的处理方法。
5. 风力系统的变频器的故障的分析
变频器的故障种类很多,主要有以下几类:和预先估计的结果差得很远、变频器不正确的动作行为、过电流、过电压以及电压不够等等。风力系统的变频器过电压情形指的是中间的直流回路超过电压,这会使中间直流回路滤波电容器的寿命大大减短。之所以会产生这种故障,是由于电源侧的冲击过电压。风力系统过电流故障是因为变频器负载有突然地变化,并且负载的不均匀分布,输出的还有短路这些种种缘由引起,加上逆变器过载的性能、功能极其差,因此逆变器过载故障诊断可谓是相当重要。另外,整流回路故障会因为输进的电源缺少而致使电压不够的故障发生。还有,低压穿过电网的时候变频器可能会产生故障,这也是一大研究的领域。
2.检查立柱拉索式风机每条钢丝绳拉索是否牢固可靠立柱拉索式小型风力发电机应经常检查拉索地锚是否牢靠。钢丝绳绳夹是否紧固。并且应经常检查每条钢丝绳拉索是否张紧,必要时调正拉索螺旋扣,拧紧或松弛。
3.定期润滑回转体小型风力发电机主要工作部件,如风轮、发电机、尾翼等均安装在回转体上。回转体长套与立柱上端的光轴应保持良好的润滑。以保持尾翼顺风向灵活转动,使风轮迎风。一般风机(高压离心风机工作半年至一年应把回转体拆开,并擦洗干净(可蘸汽油清洗),重新上好润滑油(钙基黄油)。注意,立柱光轴顶端有一压力轴承也要同时清洗干净,并涂好黄油装回原位。
4.定期润滑发电机前后轴承发电机前、后轴承每隔半年或一年保养一次。保养时将发电机取下,将前后端盖用改锥轻轻地撬开,注意不应旋转拆卸或猛力打开,以免损坏发电机内部线路或整流元件,前后端盖取下后用汽油清洗干净,重新上好润滑油(钙基黄油),并按前后端盖的要求装回原处即可。5.变桨距风轮定期检查与保养变桨距风轮因长期在大自然中工作,致使风轮变桨距导槽滑块和弹簧等零件表面容易粘满灰尘,影响风轮变桨距调速的灵敏性和一致性。所以,每隔半年或一年应检查保养一次。保养时,将风轮取下,拆下桨叶并用汽油清洗导槽,滑块和弹簧等零件,清洗干净后装回原位即可。注意清洗后一般不要加润滑油,因润滑油裸露在外面会很快粘满尘土。另外,两个叶片上的零件拆卸清洗后不能互换,以免破坏风轮的平衡。
2、高处作业(在坠落高度基准面2米及以上,下同)必须系好安全带(包括安全滑块),穿防滑绝缘鞋;在高处作业转移工作位置时,严禁失去安全防护。
3、助爬器是协助人员登塔的辅助工具,设计上不具备安全绳的功能,仅用于在现场工作人员向上攀爬塔筒时提供爬升助力,严禁将助爬器的环形钢索作为安全钢丝绳使用;在机舱内作业或用助爬器攀爬塔过程中,执行重要动作或作业内容改变前必须与地面人员进行确认
都是利用钻孔机在海底岩石上钻孔然后打桩固定发电机,工程也是蛮巨大了。
风力发电机小大还是有很大区别了。
每个风力发电机站远处看就觉得是遇见个很大风车在转动,现在1500瓦功率风机在我国都是很普遍运用中了;近看塔固定外形也是很高大了,但是这类风机也是算落后款式了,毕竟现在科学发达风机也是很多种类了;现在新建风机基本都是几兆功率了,但是这类杂音也是蛮大了,也只能设立在没人深海区域了,但是这种区域建立起来也是困难重重了,毕竟在陆地建立风机还是比较方便了。
其实风力发电机固定方法还是有几种了。
像在深海区域内都是利用钻孔机在深海内岩石上钻孔然后打桩固定发电机,这种应该是花费比较大那种,但是也是很普遍用了,因其还是比较安全了;还有就是靠沉在海底沉箱来固定风机了,这种是在海边用混凝土将沉箱基础建立起来,然后在海面上移到相应位置在里面装入沙子再重入海底,然后把风机固定就可以了,但是这种只能适应在浅海区内,深海还是不大适应了,那样还是难以找到相对应位置了,还有一种三角架基础为准了,这种也与打孔那种差不多了,没有多大差别了。
风力发电机安装原理其实也是很简单了。
风力发电机其实也是利用风力带动风车叶片旋转,再透过增速器加速来发电了,而且这种也是最省钱省力方式了;天然发电机,有了资源利用了是非常好,也是为国家节省了能源了,也证明国家科技也是蛮发达了,都能想到很好方法来发电了。
这种深海浅海风力都可以利用起来,对国家来说还是很不错了,毕竟是新能源发现吧,也是一大发现对国家电力发展是非常有好处了。
也期待能有更多新能源发现,让国家资源越来越丰富了岂不是更好啊!
风力发电机叶片是一个复合材料制成的薄壳结构,结构上分根部,外壳,龙骨三个部分。类型多种,有尖头,平头,钩头,带襟翼的尖部等。制造工艺主要包括阳模,翻阴模,铺层,加热固化,脱模,打磨表面,喷漆等。设计难点包括叶型的空气动力学设计,强度,疲劳,噪声设计,复合材料铺层设计。工艺难点主要包括阳模加工,模翻制,树脂系统选用。叶片是一个大型的复合材料结构,其重量的90%以上由复合材料组成,每台发电机一般有三支叶片,每台发电机需要用复合材料达四吨之多。
叶片的维护,叶片表面的裂纹一般在风力发电机组运行2-3年后就会出现。裂纹是由低温和机组自振所引起的。如果裂纹出现在距叶片根部的8-15米处,风力发电机的每次自振,停车都会是裂纹加深加长。裂纹在扩的同时,空气中的污垢,风沙乘_而入,是的裂纹加深加宽。裂纹严重威胁着叶片的安全,可导致叶片的开裂,横向的裂纹可导致叶片断裂。如果出现横向裂纹,必须采用拉锁加固复原法。拉锁加固复原发是指,采用专用的拉筋粘合,修复回原有的叶片平面。