钢丝绳应变如何量测?因为表面不平,所以用应变片量测不准。
可采用三种方法:
第一种,机台位移法。在施加2%MBL后,测量钢绳夹具间距离,再施加到固定载荷后,测量长度,长度的变化即为应变。数据误差较大。
第二种,数显卡尺测量法。在施加2%MBL后,在钢绳试样上,确定长度(标记),再施加到固定载荷后,测量标记长度的变化,变化量即为应变。
第三种,伸长计。使用钢丝绳的伸长计进行测量。
1.钢丝绳弹簧秤首选。在轿顶在钢丝绳中段用弹簧秤拉钢丝绳同样距离测量拉力。
2.手感。在钢丝绳中段可在机房按压钢丝绳感知压力或在轿顶手指拉钢丝绳同样距离感知拉力。
3计算弹簧秤测量每根钢丝绳平均值除以最大值就是张力与平均偏差。
用户需要使用寿命或使用时间最长,性价比最高的钢丝绳,请依据使用条件和要求选用:
1.磷化涂层钢丝绳,钢丝经锰系或锌锰系磷化处理,钢丝耐磨、耐蚀防锈能力全面跃升,使用寿命是光面钢丝绳2-3倍(注意拉拔用锌系磷化与制绳用耐磨磷化的区别,货源紧张,供不应求)
2.镀锌钢丝绳,热镀锌和电镀锌
3.不锈钢丝绳,304或316不锈钢
4.涂塑钢丝绳,钢丝绳基础上,外层涂覆聚乙烯或聚丙烯
5.光面钢丝绳,将被磷化涂层钢丝绳全面淘汰。
大气环境优选锰系磷化涂层钢丝绳,重腐蚀环境优选热镀锌—磷化双涂层钢丝绳。
选一段未经使用和磨损拉长的链条,使链条成自然垂直状态,测量出磨损过的链条与未经磨损链条节距相加的数据,计算出磨损后链条平均每节链环节距增加的比例。
钢丝绳在使用期间,一定要按规定进行定期检查,并将检查结果认真做好记录(记录表应记录绳型号、换绳时间、检查部位、检查项目、缺陷情况、检查时间和检查人员)。通过对钢丝绳随时监控,为安全、合理使用钢丝绳提供依据。使用过程检查包括外部检查与内部检查两部分。
严格讲,钢丝绳从投入使用之后,其性能就开始降低。所以,在其使用过程中,应对全长各个部位进行检查。由于客观上要对整条钢丝绳进行检查十分困难,但是,对于那些经过实践证明容易损坏的部位必须进行频繁、仔细检查,因为一旦这些部位严重损坏不能被及时发现,将可能产生灾难性的后果。
扩展资料:
绳芯的主要作用是对钢丝绳起到支撑作用,以达到稳定的横断面结构。绳芯包括钢芯和纤维芯,纤维芯包括天然纤维芯和合成纤维芯,天然纤维芯如剑麻、黄麻、棉线等,合成纤维芯包括聚乙烯和聚丙烯长丝等。天然纤维芯可以储存较多的润滑脂,对钢丝绳起到润滑作用,延长钢丝绳使用寿命。
钢丝绳捻制过程中喷涂润滑脂,其主要作用有两个,其一,对钢丝绳进行润滑减缓钢丝表面的磨损,其二,润滑脂可以将钢丝表面与空气中的氧气隔离,对钢丝绳发生氧化锈蚀起到抑制作用。
参考资料来源:百度百科-钢丝绳
电梯限速器检验方法:
1首先要脱开限速器钢丝绳的绳轮,然在限速器钢丝绳绳轮上安装一个驱动轮,这个驱动轮要具有良好的变速性能。
2、然后逐步改变驱动轮的转速,直至驱动轮的转速满足限速器动作,将此时的动作速度记录下来。
3、将电梯开到最高层,以检修速度点动向下移动轿厢0.5 m,将电梯的主电源断开,在确保无电后,将限速器钢丝绳直接通到底坑的一端,并在机房用大力钳将其夹紧,然后松闸,这时轿厢会自动上升,如果轿厢没有出现自动上升,要人工往上移动轿厢,直至限速器钢丝绳脱开绳轮。
4、最后将在不影响限速器绳轮转动的基础上,将限速器钢丝绳固定好。
为确保检验的安全性及准确性,还要注意以下几点:
1、检验工作最好在最顶层开展,这样可以保证松绳过程中,钢丝绳摆动量小,避免发生挂碰割磁板的现象。
2、在松绳后,检验人员要用手将钢丝绳拉起,避免大力钳没有将钢丝绳夹紧后,发生夹手事故。
3、在检验过程中,检验人员可以在大力钳上缠上一层帆布,这样就能有效地减少钢丝绳造成的伤害。
4、在机房中,如果孔洞的间隙比较大,就会导致大力钳缺少受力点,在这种情况下,可以将井道中的限速器绳夹在导轨上。同时,有些高层高速电梯的重砣侧钢丝绳比较重,大力钳也不能将限速器绳夹紧,此时,要先用大力钳将轿厢侧的钢丝绳夹紧,然后在底坑将重砣支撑好,用拉钩将限速器绳提拉起来。
1、数据采集装置及其它附属设施便于一次安装于工况现场各适当位置。
2、实现宽距探测和高速探测。
3、通过定量无损探测和远程网络通信,实现了在线监测技术与日常设备管理的有机结合。
4、24小时不间断运行和远程监测、实时预警,实现对钢丝绳内外部断丝、磨损、锈蚀、疲劳等各种隐蔽性损伤的在线实时监测。并能现场给出探测数据及各种损伤明确的数量值,并能做出安全状况评价及现场打印报告。
5、使用软件能独立运行,并实现其它控制操作系统的并入和兼容。
6、具有机械抗振和抗电磁干扰功能。
7、实现损伤情况现场声光报警功能。
8、具有防水、防尘、耐油、防潮功能。
9、提供软件维护和升级持续服务。
TST钢丝绳探伤(工程)系统参数
电磁感应灵敏度:U/H≥1.0V/mT
电磁感应信噪比:S/N>85dB
探伤定量不确定度:≤±1.2%
信号有效提取距离:0~30mm
探伤实时响应时间:≤ 0.5ms
连续探测距离:>104m
中心位置误差:<±2mm
传感器耗散功率:<50mW
传感器工作寿命:≥2.7×104 h
传感器输出信号:DC0~5V调制信号
探伤额定工作电压:DC5V±5%
探伤额定工作电流:200mA
采样频率响应: ≤10kHz
系统工作电压:AC220V±10%(非防爆)、AC127V±10%(防爆)
系统额定功率:<1000W
使用环境温度:-20℃~+55℃
防尘防水等级:IP54
使用相对湿度:≤95%RH(250C)
大气压力范围:80kPa~110kPa
最恶劣的贮存温度环境:-40℃~+60℃
钢丝绳无损检测仪的“大脑”
谈到磁检测法,就必然要先了解为何磁检测方法可以成功应用在实践中,磁检测法的理论依据是:利用钢丝绳是磁导体这一特性,当励磁装置将钢丝绳磁化到饱和状态后,无论是其表面或内部存在损伤,都将引起磁路系统中磁场分布的变化。利用有效手段检测由此而引起的磁场分布的变化情况,即可反映出钢丝绳损伤信息的检测信号。
一、 钢丝绳损伤的分类是什么?
首先我们先了解下钢丝绳的损伤分类,原因在于电磁检测仪的是按照可以检测到的缺陷类型来分类的。
1)局部损伤(LF local flaw):钢丝绳中的不连续,诸如内外部断丝、钢丝的蚀坑、较深的钢丝磨损或钢丝绳局部形状异常等。
2)金属横截面积的损失(LMA loss of metallic cross-sectional area):使钢丝绳横截面上金属截面积总和减小的损伤,主要包括磨损、锈蚀、钢丝绳绳径缩细等,相对于LF缺陷,这类缺陷沿钢丝绳轴向方向上的变化一般较缓慢。它是钢丝绳特定区域中材料(质量)缺损的相对度量,通过比较检测点与钢丝绳上象征最大金属横截面积的基准点来测定的。
二、钢丝绳无损检测仪的分类有哪些?
1、交流电磁类
其工作原理类同于变压器原理,初级和次级线圈环绕在钢丝绳上,钢丝绳犹如变压器的铁芯(图1)。初级(激励)线圈的电源为10~30Hz的低频交流电,次级(检测)线圈测定钢丝绳的磁特性。钢丝绳磁特性的任何关键变化都会引起次级线圈的电压变化(幅度和相位)反映出来。
要点:电磁类仪器通常是在较低磁场强度的条件下工作,因此在开始检测前,有必要将钢丝绳彻底退磁。
检测缺陷类型:金属截面积变化LMA缺陷
图1 电磁类仪器传感器示意图
2、直流和永磁(磁通)类仪器
直流和永磁类提供恒定磁通,通过传感器头(磁回路)磁化一段钢丝绳(见图2 ),钢丝绳中的轴向总磁通,能通过感应线圈来测定。
图2 感应线圈测量金属横截面积损失的永磁类设备传感器头示意图
3、漏磁类仪器
直流或永磁类仪器提供恒定磁通,通过传感器头(磁回路)来磁化一段钢丝绳,钢丝绳中的不连续(如断丝)所引起的漏磁,用不同传感器如霍尔元件传感器来检测。
此类仪器用于测定LF缺陷。
图3 断丝导致漏磁的示意图
4、 剩磁类仪器
直流或永磁类磁化装置对钢丝绳磁化后,在确保外加磁场已移除或无外加磁场影响的情况下,利用磁性钢丝绳的剩磁特性,采用能有效测定剩余磁场变化的适当检测装置,来测定钢丝绳内剩磁场的变化。
此类仪器能用于测定金属横截面积的变化和局部损伤的存在。
该方法是新开发的一种钢丝绳检测技术,有待进一步的跟踪研究和应用验证。
图4 剩磁类仪器测量金属横截面积损伤的示意图
一台设备可同时具有磁通和漏磁两种检测原理。
三、两种不同的传感器:感应线圈和霍尔元件
1、感应线圈
谈到感应线圈,大家都不会陌生变压器,当线圈与钢丝绳间产生相对运动时,线圈切割漏磁场产生感应电动势Uc。
图5 感应电动势公式
式中:n-线圈匝数;
Φ-通过线圈的磁通量;
V-钢丝绳相对于感应线圈的运动速度;
dΦ /ds-钢丝绳内部磁通量相对于钢丝绳位移的变化率;
当线圈匝数n与运动速度一定时,感应电动势Uc能反映出钢丝绳中磁通量沿钢丝绳轴向的变化,即钢丝绳有效金属截面积沿轴向的变化。
随着钢丝绳相对于感应线圈和励磁器相对的运动,钢丝绳将被励磁器逐渐磁化至饱和状态,若存在损伤,其内部磁通量(与钢丝绳的有效金属截面积成正比)必然减少,于是就会使得感应线圈产生电压输出。对输出电压进行测量就可以检测出金属截面积的变化。
感应线圈的最大缺点是传感器的输出和检测速度有关,检测速度的不均匀时传感器输出信号产生畸变,极低速时无输出。同时,速度不均匀会造成检测信号在时间轴上的压缩和拉伸,不利于后续信号的处理。
图6 全磁通检测法原理
2、霍尔元件传感器
霍尔元件的原理:在垂直于磁场的导体里通过一定电流,则在垂直于电流和磁场方向上有一个磁场,并在两端有电动势输出成为霍尔效应。
霍尔元件的霍尔电压为:
式中 Kc-霍尔元件的灵敏度系数
Ic-输入的控制电流
B-磁场的磁感应强度
φ-磁感应强度B的方向与元件法向矢量之间的夹角
对于确定的霍尔元件,Kc为常数。在元件安装位置确定,φ值则不变,则式中的VH与B成正比,这就是霍尔元件重要的定向响应特性。应用这一原理,只要检测出霍尔元件两端的输出电压VH便可获得断丝损伤信号。
霍尔元件的最大优点是输出信号不受速度的影响,且体积小,对小间隙空间的磁场测量有很大的优越性。