钢丝绳的安全系数如何选择?
安全系数一般是5~6
钢丝绳直径(mm)X直径(mm)X50=破断拉力(公斤)÷6倍安全系数÷1000=安全负荷
应用场合 建议的安全系数
静态张拉钢丝绳和钢绞线 3-4
小型悬索桥的主缆绳 3-3.5
小型悬索桥的悬挂钢丝绳 3.5-4
架空索道承载绳 3-4
架空索道牵引绳 5-6
起重机等 5-5.5
抓斗吊机上的控制钢绳 4-5
挖掘机 5
水平牵引,连续牵引车 4-5
矿井提升,竖井和斜井 最小5
工业提升 最小6
桥式,门式,塔式,桅杆式吊车 最小6
电梯 载人 最小12
载物 最小10
热金属吊车 最小8
不旋转钢丝绳,18×7 类 最小10
钢丝绳主要品种有锰系磷化涂层钢丝绳、镀锌钢丝绳和不锈钢丝绳,钢丝绳的直径从0.5至180毫米,制绳钢丝直径一般在0.2至4毫米,获得高强度钢丝的方法包括使用高含碳量和增大压缩率,使用含碳量0.90%并大压缩率可以达到1960强度级,制绳钢丝磷化不会降低强度。
悬索桥钢丝,钢丝7.0毫米,如果达到1960强度级,原料需要18-22毫米直径的高碳盘条,这种大直径拉拔非常困难,在热镀锌过程中,热镀锌温度460度,1960强度级冷拉钢丝镀锌过程中受到热作用,抗拉强度降到1770强度级,所以,大直径热镀锌钢丝只能做到1770强度级
如果采用电镀锌,钢丝电镀过程中强度不降低,但生产成本将大幅度提高,价格自然水涨船高。
韩国天使大桥于2019年建成通车,全长约7.26千米,是韩国第一座在同一桥梁上设置斜拉桥和悬索桥两种桥型的桥梁。大桥因其采用了PPWS主缆(抗拉强度为1960 兆帕)、FCM墩台锚固和高性能钢材,以及优异的抗风稳定性入围了2020年度IABSE杰出结构大奖。
韩国天使大桥
韩国的西南海岸以其美丽的多岛屿而闻名。尤其是由木浦海岸线上1004座岛屿组成的新安郡,因为天使大桥的建成通车而 旅游 价值激增。天使大桥连接了Amtae岛和Apae岛,由一座斜拉桥、一座多跨悬索桥和多联梁桥组成。其中斜拉桥长1004米,三塔悬索桥长1750米,本文将重点介绍这座横跨主航道的多塔悬索桥。
设计上的选择
为了确保海上运输的安全,并且能够抵抗强风,天使大桥必须以独特的形状进行设计建造。按照招标文件和相关机构的通航要求,并通过韩国海事海洋大学进行的3D全桥模拟和海上交通安全评估,确定了两个650米的主跨布置方案。同时,为了与景观环境相协调,区别于周围地区的木浦大桥、珍岛大桥等斜拉桥桥型,选择多塔悬索桥是一种更优的方案。
图1 桥梁总体布置图
主缆
通过采用最新的1960MPa高强钢绞线,利用预制平行索股法(PPWS)架设主缆,提高了可施工性和经济性。考虑到主缆架设时的安全性及稳定性,将垂度比设为1/8。主缆的重量和直径分别为1900吨和309.4毫米。
在主缆的设计中,对3项技术进行了改进。首先,与现有的镀锌钢绞线相比,锌+铝涂层可以使疲劳寿命延长1.4倍,耐腐蚀性提高4倍。而且,这种涂层还可以提高除湿系统的使用寿命。其次,在防腐系统中引入橡胶包裹法,不再需要缠绕包裹线。通常S形的缠绕线有被腐蚀的风险,并且在定期喷涂方面始终存在耐久性和养护问题。橡胶包裹法既不需要单独的金属丝,也不需要定期上漆,与除湿系统一起使用时,可以确保最佳的耐久性。第三,塔顶鞍座的主体部分采用了混凝土材料,而不是悬索桥中常用的铸铁或结构钢。仅鞍座的槽是由钢材制成的。由于混凝土是现场浇筑的,因此不需要大规模的临时支架即可起吊鞍座,而且鞍槽也可以很容易地随塔式起重机安装。
图2 混凝土塔顶鞍座
主梁
主梁设计的首要任务是确保梁体的抗风稳定性及经济性。虽然通过减小主梁自重,可以保证经济性,但同时,过轻的梁体也更容易受到风荷载的影响。因此,需要在经济性和风稳定性之间保持适当的平衡。为了设计出最佳的主梁横截面,在参阅了各种文献研究后,选择了扁平的菱形钢箱梁截面。通过风洞测试发现,风嘴的上侧和下翼缘的夹角分别为30 和13 时,可以有效地控制主梁的颤动。为了减轻结构钢的重量,采用了50毫米的环氧沥青和支撑式横隔板,以及在主要构件中采用了最新研发的HSB500系列高性能钢,以提高钢桥的抗疲劳性能及经济性。
图3 加劲梁的横截面
桥塔
毫不夸张地说,在悬索桥中,桥塔的形状决定了整座桥梁的美观程度。而且,在多塔悬索桥中,主塔的稳定性和抗弯刚度也扮演着十分重要的角色。为了提高结构效率,有效抵抗由活荷载引起的纵向力,天使大桥的混凝土桥塔被设计成较为复杂的H形。主塔越坚固,当整体结构的刚度增加时,主梁的挠度就越小。但是,如果过度限制主塔的位移,则可能无法保持塔鞍和主缆之间的摩擦平衡力。为了让塔身保证足够的刚度,又不会对鞍座的滑移稳定性造成威胁,需要通过对塔身的刚度参数进行研究来确定最佳的截面刚度特性。考虑了主缆的滑移摩擦力和塔顶的挠曲变形,优化后的塔底截面的刚度比塔身截面的刚度高6.5倍。
锚碇
多塔悬索桥锚固点的水平力是由其中一个主跨度(650m)决定的,而不是整座桥的跨度。在设计时,将锚固点的水平力降低到了74200kN。这也是在韩国现有悬索桥中最小的水平力。因此,这一水平力的降低也有可能将锚碇体积降至最低,而锚碇通常占建筑成本的比例较大。锚固位置是在距海床10米以上的软黏土层,而距海平面下26米处则为基岩。如果在这种情况下使用沉箱基础,则有沉降和偏移的风险,解决方案可能非常棘手且成本高昂。经过多次研究,采用钻孔与沉箱结合使用的复合地基处理方案,通过压实打桩(SCP)法和深层水泥搅拌(DCM)法提高了基础结构的性能。
施工上的挑战
架设猫道
猫道是悬索桥施工时架设在主缆之下、平行于主缆线形的临时施工便道。它是施工人员进行施工作业的高空脚手架,是主缆系统乃至悬索桥整个上部结构的施工平台。施工人员在其上完成诸如索股牵引、调股、整形入鞍、紧缆、索夹及吊索安装、箱梁吊装及主缆缠丝、防护涂装等重要任务。
这座桥的猫道系统由六根钢丝绳支撑,每根钢丝绳直径为31.5毫米,形成一个横截面4.2米宽、6.75米高的工作区,总长度为2,065米。这些猫道绳在中塔处隔开。猫道上布置的支撑牵引系统的框架,框架间隔42.5米,主缆成型机(紧缆机)的间距也是42.5米。猫道位于主缆下方,主缆和猫道之间有1.3米的间隙。
安装塔鞍
在悬索桥中,塔鞍的安装是值得注意的过程之一,因为鞍座通常是缆索体系安装过程中最大、最重的构件。由于采用了混合式鞍座,鞍座底部基座为混凝土结构,上部为钢结构,塔式起重机需要吊起的构件重量仅为3吨,不需要为该作业过程调动任何的临时设备,在实用性和经济性方面有很大的优势。同时,混凝土材料良好的抗压特性成为了这种混合鞍座的另一个优点。在施工阶段,两侧桥塔上的鞍座必须向中心桥塔预偏,以保持缆索体系的初始平衡条件。为了方便,在鞍座下面安装了滑动板。
架设主缆
主缆总重量为1847吨,直径为5.3毫米,抗拉强度为1960兆帕。钢丝由韩国的Kiswire公司制造,这些高强钢丝在工厂按照预制平行钢丝索股法(PPWS)编成平行钢丝束、两端装上锚头,成为索股。将制成的索股卷在卷筒上,被驳船运输到施工现场。利用牵引设备沿猫道将索股端头从桥的一端锚碇拉向另一端锚碇,经就位、调股等工序后将其固定。主缆由21根索股组成,每股包含127根钢丝。主缆安装的总时间为40天。
桥面安装
根据设计,桥面被划分为85个节段,两个边跨和两个主跨需要同时起吊安装,一共需要6个龙门架,每个主跨有两个,每个边跨有一个。然而,只有4套起吊设备可用。由于没有足够的预算来支付另外两个龙门架的费用,因此必须对这一过程进行调整,使用合适且有限的设备。
图4 主跨区完成后在边跨进行桥面板安装
在修改后的施工工序中,首先起吊主跨部分的桥面构件,然后将龙门架从主跨移到相邻的边跨。在移动龙门架的期间,最靠近桥塔的桥面板和两端的桥面构件均由浮式起重机安装。
该施工方案中的关键问题是桥塔上不平衡的索力,这会导致索鞍滑移和塔底弯矩的产生。此外,主缆的几何形状变化较大,导致了主缆中产生二次应力。因此,对于每个安装步骤和每个阶段的模拟情况,都要检查包括桥塔应力,索鞍滑移、索内次应力等结构效应。
天使大桥作为地标性建筑进行设计,克服了复杂的海洋环境,节省了成本,并成为了当地人的骄傲。选择满足这些严格条件的多塔悬索桥方案,有望为同类型工程提供参考。考虑到多塔悬索桥在跨海桥梁中被认为是一种更优的桥型,天使大桥的建成为同类型桥梁技术的发展起到了推动作用,也使这种类型在世界桥梁市场上独领风骚。
本文刊载 / 《桥梁》杂志 2021年 第1期 总第99期
作者 / 孙允基(韩)等
资料来源 / Structural Engineering International 2020
1、根据结构特点,主缆架设可以采取在便桥或已浇筑桥面外侧直接展开,用卷扬机配合长臂汽车吊从主梁的侧面起吊安装就位。
2、缆索的支撑方法为避免形成绞,将成圈索放在可以旋转的支架上。在桥面每4-5m,设置索托辊,以保证索纵向移动时不会与桥面直接摩擦造成索护套损坏。因锚端重量较大,在牵引过程中采用小车承载索锚端。
3、缆索的牵引,牵引采用卷扬机,为避免牵钢丝绳过长,索的纵向移动可分段进行,索的移动分三段,分别在二桥塔和索终点共设三台卷扬机。
4、缆索的起吊,在塔的两侧设置导向滑车,卷扬机固定在引桥桥面上主桥索塔附近,卷扬机配合放索器将索在桥面上展开。主要用吊车起吊,提升时避免索与桥塔侧面相摩擦。当索提升到塔尖时将索吊入索鞍。在主索安装时,在桥侧配置了3台吊机,即锚固区提升主索塔顶就位吊机和提升倒链。
5、拉索锚固端牵引到位时,用锚固区提升吊机安装主索锚具,并一次锚固到设计位置,吊机起重力在5t以上;主索塔顶就位吊机是在两座塔的二侧安置提升高度大于25m时起重力大于45t的汽车吊,用于将主索直接吊上塔顶索鞍就位;主索在提升到塔顶时,适当的时候用塔上提升倒链协助吊装。
扩展资料
悬索桥主要问题
1、更优越的施工方法的研究。例如将中跨主缆锚固在主梁的底部,用转体施工,从而可以在一定程度上克服施工上的困难,但在跨径较大的情况下,如何保证转体施工时的稳定性,还需要做进一步的研究。
2、当主缆外包钢管混凝土时,吊杆在主缆上的锚固方式研究。
3、吊杆及主缆的合理张拉顺序研究。
4、新型材料的研究和开发。
5、受力体系及理论的进一步完善。
参考资料来源:百度百科-悬索桥
钢丝绳内所有钢丝拉断力之和与钢绳最大静负荷之比。
起重钢丝绳的安全系数应符合下列规定:
(1)用于固定起重设备为3.5;
(2)用于人力起重为4.5;
(3)用于机动起重为5-6;
(4)用于绑扎起重物为10;
(5)用于供人升降用为14。
扩展资料
钢丝绳在冶金、矿山、石油天然气钻采、机械、化工、航空航天等领域成为必不可少的部件或材料。
钢丝绳其质量也被国内多个行业所关注,并投入大量人力、物力进行钢丝绳使用研究和产品开发工作,对钢丝绳的结构选择、日常使用、维护保养、更换报废等各个环节制定了很多规程和细则。
1834年欧洲人奥鲁勃特发明了世界上第一根钢丝绳(光面钢丝绳),1939年建立的天津市第一钢丝绳厂是我国第一家金属制品企业。
参考资料来源:百度百科-钢丝绳安全系数
参考资料来源:百度百科-钢丝绳
跨海大桥使用的钢丝绳,为什么不会断裂?
跨海大桥使用的钢丝绳常年承受巨力,还被风吹雨淋,为什么不会断裂?他到底是怎么制造出来的?
首先我们来看一下钢丝绳的制作过程。一条完美的钢丝绳要经过钢丝成型和扭绳两部生产。钢丝的原料一般采用优质高碳钢,这些原料在进入生产线后,经过热处理、拉拔等生产工序后,为了提高钢丝性能,工人还会在钢丝表面涂上一层合金涂料,比如锌铝合金等。另外,在这个阶段,质检人员还会对钢丝的强度、韧性等各方面进行性能检测,检测合格的钢丝才可以进入钢丝绳的生产阶段。它的原理和拧麻绳相同,主要有拉丝、粘谷、集合绳三个工序,先将这些钢丝拉成统一的粗细,然后一一排列,通过分线盘、变形器等机器将钢丝拧成小古钢索,随后就进入了合绳阶段。
通常来说,一根钢丝绳由六股或以上的细钢索拧成,这些钢索经过变形器后会变成螺旋形,然后绞绳机会把这些钢索沿着绳心绞成一大股,通过压线瓦炸制后就形成了免致紧密的股绳。在合成的过程中,还会在绳索上涂一层防锈润滑油脂,以增加钢丝绳的使用寿命。钢丝绳生产出来后,还需要进行磷化处理,将钢丝绳浸泡在一定浓度的碳酸银溶液中,它的表面会形成一层防腐蚀的薄膜,经过这种处理的钢丝绳抗氧化能力、耐腐蚀性和强度都得到了提升。
在制作完成之后,钢丝绳还要经过力学性能、抗拉强度和抗疲劳性能,这是目前最常见的办法就是整绳破断拉力试验,用拉力机拉住绳索两端,在绳索断裂时确定他的破断拉力的大小,只有强度符合标准,才可以投入桥梁建设中。在桥梁设计时,每根钢丝绳的最大破断拉力及其能承受的最大重量都经过了精密的计算,因此,只要桥梁重量不超过钢丝绳己定的最大承重,它就不会断裂。
例如美国的金门大桥,1937年就建成了,至今已80多年了还在使用。当然,大桥上的这些钢丝绳的使用也是有讲究的,像钢丝绳竖着的这种叫悬索桥,斜着的叫斜拉桥,那两种桥又有什么差别呢?因为钢索方向不一样,桥梁受力结构有所不同。悬索桥以悬索主缆为主要承重构件,通过竖向钢索将桥面重量传到竹篮上,在由竹兰通过竹塔上的钢丝绳传到铆钉和主塔上,而斜拉桥已斜拉主缆为主要承重构件独揽,直接承受桥面荷载,再传到索塔上。
其次,两者的应用范围也不同。悬索桥的稳定更好,适合大风和地震区的需要,还可以建在比较湍急的水流上。南京长江第四大桥是中国首座三跨吊悬索大桥,在同大桥中居世界第三,被誉为中国的金门大桥儿。斜拉桥作为一种拉索体系,比悬索桥的跨越能力更好,跨径可达300到一千米,是大跨度桥梁的主要桥型。就像我国的苏通长江公路大桥,它也是世界跨径第一的斜拉桥。
自锚式施工工艺
1、主塔施工
悬索桥一般主塔较高,塔身大多采用翻模法分段浇筑,在主塔连结板的部位要注意预留钢筋及模板支撑预埋件。对于索鞍孔道顶部的混凝土要在主缆架设完成后浇筑,以方便索鞍及缆索的施工。主塔的施工控制主要是垂直度监控,每段混凝土施工完毕后,在第二天早晨8:00至9:00间温度相对稳定时,利用全站仪对塔身垂直度进行监控,以便调整塔身混凝土施工,应避免在温度变化剧烈时段进行测试,同时随时观测混凝土质量,及时对混凝土配比进行调整。
2、鞍部施工
检查钢板顶面标高,符合设计要求后清理表面和四周的销孔,吊装就位,对齐销孔使底座与钢板销接。在底座表面进行涂油处理,安装索鞍主体。索鞍由索座、底板、索盖部分组成,索鞍整体吊装和就位困难;可用吊车或卷扬设备分块吊运组装。索鞍安装误差控制在横向轴线误差最大值3mm标高误差最大值3mm.吊装入座后,穿入销钉定位,要求鞍体底面与底座密贴,四周缝隙用黄油填实。
3、主梁浇筑
主梁混凝土的浇筑同普通桥一样,首先梁体标高的控制必须准确,要通过精确的计算预留支架的沉降变形;其次,梁体预埋件的预埋要求有较高的精度,特别是拉杆的预留孔道要有准确的位置及良好的垂直度,以保证在正常的张拉过程中拉杆始终位于孔道的正中心。主梁浇筑顺序应从两端对称向中间施工,防止偏载产生的支架偏移,施工时以水准仪观测支架沉降值,并详细记录。待成型后立即复测梁体线型,将实际线型与设计线型进行比较,及时反馈信息,以调整下一步施工。
4、索部施工
(1)主缆架设
根据结构特点,主缆架设可以采取在便桥或已浇筑桥面外侧直接展开,用卷扬机配合长臂汽车吊从主梁的侧面起吊安装就位。
缆索的支撑:为避免形成绞,将成圈索放在可以旋转的支架上。在桥面每4-5m,设置索托辊(或敷设草包等柔性材料。),以保证索纵向移动时不会与桥面直接摩擦造成索护套损坏。因锚端重量较大,在牵引过程中采用小车承载索锚端。
缆索的牵引:牵引采用卷扬机,为避免牵钢丝绳过长,索的纵向移动可分段进行,索的移动分三段,分别在二桥塔和索终点共设三台卷扬机。
缆索的起吊:在塔的两侧设置导向滑车,卷扬机固定在引桥桥面上主桥索塔附近,卷扬机配合放索器将索在桥面上展开。主要用吊车起吊,提升时避免索与桥塔侧面相摩擦。当索提升到塔尖时将索吊入索鞍。在主索安装时,在桥侧配置了3台吊机,即锚固区提升吊机、主索塔顶就位吊机和提升倒链。 当拉索锚固端牵引到位时,用锚固区提升吊机安装主索锚具,并一次锚固到设计位置,吊机起重力在5t以上;主索塔顶就位吊机是在两座塔的二侧安置提升高度大于25m时起重力大于45t的汽车吊,用于将主索直接吊上塔顶索鞍就位,在吊装过程中为避免索的损伤,索上吊点采用专用索夹保护;主索在提升到塔顶时,由于主跨的索段比较长,为确保吊机稳定,可在适当的时候用塔上提升倒链协助吊装。
(2)主缆调整
在制作过程中要在缆上进行准确标记。标记点包括锚固点、索夹、索鞍及跨中位置等。安装前按设计要求核对各项控制值,经设计单位同意后进行调整,按照调整后的控制值进行安装,调整一般在夜间温度比较稳定的时间进行。调整工作包括测定跨长、索鞍标高、索鞍预偏量、主索垂直度标高、索鞍位移量以及外界温度,然后计算出各控制点标高。
主缆的调整采用75t千斤顶在锚固区张拉。先调整主跨跨中缆的垂直标高,完成索鞍处固定。调整时应参照主缆上的标记以保证索的调整范围。主跨调整完毕后,边跨根据设计提供的索力将主缆张拉到位。
(3)索夹安装
为避免索夹的扭转,索夹在主索安装完成后进行。首先复核工厂所标示的索夹安装位置,确认后将该处的PE护套剥除。索夹安装采用工作篮作为工作平台,将工作篮安装在主缆上(或同普通悬索桥一样搭设猫道),承载安装人员在其上进行操作。索夹起吊采用汽吊,索夹安装的关键是螺栓的坚固,要分二次进行)索夹安装就位时用扳手预紧,然后用扭力扳手第一次坚固,吊杆索力加载完毕后用扭力扳手第二次紧固。索夹安装顺序是中跨从跨中向塔顶进行,边跨从锚固点附近向塔顶进行。
(4)吊杆安装及加载
吊杆在索夹安装完成后立即安装。小型吊杆采用人工安装,大型吊杆采用吊车配合安装。
由于自锚式悬索桥在荷载的作用下呈现出明显的几何非线性,因此吊杆的加载是一个复杂的过程。主缆相对于主梁而言刚度很小。如果吊杆一次直接锚固到位,无论是张拉设备的行程或者张拉力都很难控制而全桥吊杆同时张拉调整在经济上是不可行的。为了解决这个问题,就必须根据主梁和主缆的刚度、自重采用计算机模拟的办法,得出最佳加载程序。并在施工过程中,通过观测,对张拉力加以修正。
吊索张拉自塔柱和锚头处开始使用8台千斤顶对称张拉。吊索底端冷铸锚具,其锚杯铸有内外螺纹,内螺纹用于连接张拉时的连接杆以便千斤顶作用,外螺纹用螺母连接后将吊杆固定于锚垫板上。由于主缆在自重状态标高较高,导致吊杆在加载之前下锚头处于主梁梁体之内,因此在张拉时需配备临时工作撑脚和连接杆。
第一次张拉施加1/4的设计力将每一根吊杆临时锁定!第二次顺序与第一次相同,按设计力张拉完,然后检测每一根吊杆的实际荷载,最后根据设计力具体对每一根吊杆进行微调。在吊索的张拉过程中,塔顶与鞍座一起发生位移!塔根承受弯矩!这样有可能产生塔根应力超限的危险,为了不让塔根应力超限!张拉一定程度后,根据实际观测及计算分析!进行索鞍顶推,使塔顶回到原来无水平位移时的状态,如此反复后!将每根吊索的张拉力调整至设计值。施工过程的控制对于自锚式混凝土悬索桥每一道工序的施工均非常重要,尤其在索部施工过程中每一阶段每一根吊索的索力都要及时准确的反馈。吊索张拉时千斤顶的油表读数是一个直观反映,另外利用智能信号采集处理分析仪通过对吊索的振动测出其所受的拉力,两种方法互相检验,确保张拉时每一根吊索的索力与设计相吻合。
自锚式悬索桥
一般索桥的主要承重构件主缆都锚固在锚碇上,在少数情况下,为满足特殊的设计要求,也可将主缆直接锚固在加劲梁上,从而取消了庞大的锚碇,变成了自锚式悬索桥。
过去建造的自锚式悬索桥加劲梁大多采用钢结构,如1990年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥墩等。2002年7月在大连建成了世界上第一座钢筋混凝土材料的自锚式悬索桥——金石滩金湾桥墩,为该类桥墩型的研究提供了宝贵的经验。此后在吉林、河北、辽宁又有4座钢筋混凝土自锚式悬索桥正在设计和设计和建造中。
自锚式悬索桥有以下的优点:①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。
②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,也可做成单塔双跨的悬索桥。
③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。
④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。
⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。
⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。
自锚式悬索桥也不可避免地有其自身的缺点:①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。
②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊索,因此需要搭建大量临时支架以安装加劲梁。所以自锚式悬索桥若跨径增大,其额外的施工费用就会增多。
③锚固区局部受力复杂。
④相对地锚式悬索桥而言,由于主缆非线性的影响,使得吊杆张拉时的施工控制更加复杂。 19世纪后半叶,奥地利工程师约瑟夫·朗金和美国工程师查理斯。本德分别独立地构思出自锚式悬索桥的造型。本德在1867年申请了专利,朗金则在1870年在波兰建造了一座小型的铁路自锚式悬索桥。
到20世纪,自锚式悬索桥已经在德国兴起。1915年,德国设计师在科隆的莱茵河上建造了第一座大型自锚式悬索桥——科隆-迪兹桥,当时主要是因为地质条件的限制而使工程师们选择了这种桥型,该桥主跨185m,用木脚手架支撑钢梁直到主缆就位。此后,美国宾夕尼亚州的匹兹堡跨越阿勒格尼河的3座桥和在日本东京修建的清洲桥都受科隆-迪兹桥的影响。虽然科隆-迪兹桥1945年被毁,但原桥台上的钢箱梁仍保存至今。匹兹堡的3座悬索桥比科隆-迪兹桥的跨径要小,但施工技术比科隆-迪兹桥有了很大的进步。科隆-迪兹桥建成后的25年内在德国莱茵河上又修建了4座悬索桥,其中最著名的是1929年建成的科隆-米尔海姆桥,该桥主跨315m,虽然该桥在1945年被毁,但它至仍然保持着自锚式悬索桥的跨径记录。在20世纪30年代,工程师们认为自锚式悬索桥加劲梁的轴力将使该种桥梁的受力性能接近于弹性理论,所以这段时间美国德国修建了许多座自锚式悬索桥。 1、受力原理
自锚式悬索桥的上部结构包括:主梁、主缆、吊杆、主塔四部分。传力路径为:桥面重量、车辆荷载等竖向荷载通过吊杆传至主缆承受,主缆承受拉力,而
主缆锚固在梁端,将水平力传递给主梁。由于悬索桥水平力的大小与主缆的矢跨比有关,所以可以通过矢跨比的调整来调节主梁内水平力的大小,一般来讲,跨度较大时,可以适当增加其矢跨比,以减小主梁内的压力,跨度较小时,可以适当减小其矢跨比,使混凝土主梁内的预压力适当提高。由于主缆在塔顶锚固,为了尽量减少主塔承受的水平力,必须保证边跨主缆内的水平力与中跨主缆产生的水平力基本相等,这可以通过合理的跨径比来调节,也可以通过改变主缆的线形来调节。
另外,自锚式悬索桥中的恒载由主缆来承受,而活载还需要由主梁来承受,所以主梁必须有一定的抗弯刚度,主梁的形式以采用具有一定抗弯刚度的箱形断面较为合适。
2、结构特点
采用自锚式结构体系,和地锚式相比可以不考虑地质条件的影响,而且由于免去了巨大的锚锭,降低了工程造价。采用自锚,将主缆锚固于加劲梁之上,相比同等跨径的其他桥型,更有其特有的曲线线形,外观优雅,而且现代桥梁除了满足自身的结构要求外,也越来越注重景观设计,其发展前途很大。
自锚式悬索桥采用混凝土加劲梁,虽然增加了体系的自重,但也增加了体系的刚度,在一定的跨度允许范围内,使桥梁的安全性指标、适用性指标、经济性指标、美观性指标得到了完美的统一。对结构受力而言,由于采用了自锚体系,将索锚固于主梁上,利用主梁来抵抗水平轴力,对于混凝土这种抗压性能好的材料来说无疑是相当于提供了。免费的。预应力。因此采用的是普通钢筋混凝土结构,节省了大量的预应力器具,而且又由于混凝土材料相对于钢材料的经济性,工程造价大大减少。但是由于混凝土的抗拉、弯的性能较差,所以对其进行受力分析时应综合考虑这个特点。
由于自锚式悬索桥的主缆拉力是传递给桥梁本身,而不是锚锭体,主缆拉力的水平分力在桥梁的上部结构中产生压力,如果两端不受约束的话,其垂直分力将使桥梁的两端产生上拔力。例如金石滩悬索桥桥采用了两种办法来抵抗这种上拔力:一是在锚块处设置拉压支座;二是在主桥和引桥的交接处设置牛腿,从而将引桥的重量压在主梁上。
由于主梁采用混凝土材料,设计和计算时必须计入混凝土的收缩)徐变等因素的影响,这就使得混凝土自锚式悬索桥的设计较钢桥更为复杂。 1、主塔施工
悬索桥一般主塔较高,塔身大多采用翻模法分段浇筑,在主塔连结板的部位要注意预留钢筋及模板支撑预埋件。对于索鞍孔道顶部的混凝土要在主缆架设完成后浇筑,以方便索鞍及缆索的施工。主塔的施工控制主要是垂直度监控,每段混凝土施工完毕后,在第二天早晨8:00至9:00间温度相对稳定时,利用全站仪对塔身垂直度进行监控,以便调整塔身混凝土施工,应避免在温度变化剧烈时段进行测试,同时随时观测混凝土质量,及时对混凝土配比进行调整。
2、鞍部施工
检查钢板顶面标高,符合设计要求后清理表面和四周的销孔,吊装就位,对齐销孔使底座与钢板销接。在底座表面进行涂油处理,安装索鞍主体。索鞍由索座、底板、索盖部分组成,索鞍整体吊装和就位困难;可用吊车或卷扬设备分块吊运组装。索鞍安装误差控制在横向轴线误差最大值3mm标高误差最大值3mm.吊装入座后,穿入销钉定位,要求鞍体底面与底座密贴,四周缝隙用黄油填实。
3、主梁浇筑
主梁混凝土的浇筑同普通桥一样,首先梁体标高的控制必须准确,要通过精确的计算预留支架的沉降变形;其次,梁体预埋件的预埋要求有较高的精度,特别是拉杆的预留孔道要有准确的位置及良好的垂直度,以保证在正常的张拉过程中拉杆始终位于孔道的正中心。
主梁浇筑顺序应从两端对称向中间施工,防止偏载产生的支架偏移,施工时以水准仪观测支架沉降值,并详细记录。待成型后立即复测梁体线型,将实际线型与设计线型进行比较,及时反馈信息,以调整下一步施工。
4、索部施工
(1)主缆架设
根据结构特点,主缆架设可以采取在便桥或已浇筑桥面外侧直接展开,用卷扬机配合长臂汽车吊从主梁的侧面起吊安装就位。
缆索的支撑:为避免形成绞,将成圈索放在可以旋转的支架上。在桥面每4-5m,设置索托辊(或敷设草包等柔性材料。),以保证索纵向移动时不会与桥面直接摩擦造成索护套损坏。因锚端重量较大,在牵引过程中采用小车承载索锚端。
缆索的牵引:牵引采用卷扬机,为避免牵钢丝绳过长,索的纵向移动可分段进行,索的移动分三段,分别在二桥塔和索终点共设三台卷扬机。
缆索的起吊:在塔的两侧设置导向滑车,卷扬机固定在引桥桥面上主桥索塔附近,卷扬机配合放索器将索在桥面上展开。主要用吊车起吊,提升时避免索与桥塔侧面相摩擦。当索提升到塔尖时将索吊入索鞍。在主索安装时,在桥侧配置了3台吊机,即锚固区提升吊机、主索塔顶就位吊机和提升倒链。
当拉索锚固端牵引到位时,用锚固区提升吊机安装主索锚具,并一次锚固到设计位置,吊机起重力在5t以上;主索塔顶就位吊机是在两座塔的二侧安置提升高度大于25m时起重力大于45t的汽车吊,用于将主索直接吊上塔顶索鞍就位,在吊装过程中为避免索的损伤,索上吊点采用专用索夹保护;主索在提升到塔顶时,由于主跨的索段比较长,为确保吊机稳定,可在适当的时候用塔上提升倒链协助吊装。
(2)主缆调整
在制作过程中要在缆上进行准确标记。标记点包括锚固点、索夹、索鞍及跨中位置等。安装前按设计要求核对各项控制值,经设计单位同意后进行调整,按照调整后的控制值进行安装,调整一般在夜间温度比较稳定的时间进行。调整工作包括测定跨长、索鞍标高、索鞍预偏量、主索垂直度标高、索鞍位移量以及外界温度,然后计算出各控制点标高。
主缆的调整采用75t千斤顶在锚固区张拉。先调整主跨跨中缆的垂直标高,完成索鞍处固定。调整时应参照主缆上的标记以保证索的调整范围。主跨调整完毕后,边跨根据设计提供的索力将主缆张拉到位。
(3)索夹安装
为避免索夹的扭转,索夹在主索安装完成后进行。首先复核工厂所标示的索夹安装位置,确认后将该处的PE护套剥除。索夹安装采用工作篮作为工作平台,将工作篮安装在主缆上(或同普通悬索桥一样搭设猫道),承载安装人员在其上进行操作。索夹起吊采用汽吊,索夹安装的关键是螺栓的坚固,要分二次进行)索夹安装就位时用扳手预紧,然后用扭力扳手第一次坚固,吊杆索力加载完毕后用扭力扳手第二次紧固。索夹安装顺序是中跨从跨中向塔顶进行,边跨从锚固点附近向塔顶进行。
(4)吊杆安装及加载
吊杆在索夹安装完成后立即安装。小型吊杆采用人工安装,大型吊杆采用吊车配合安装。
由于自锚式悬索桥在荷载的作用下呈现出明显的几何非线性,因此吊杆的加载是一个复杂的过程。主缆相对于主梁而言刚度很小。如果吊杆一次直接锚固到位,无论是张拉设备的行程或者张拉力都很难控制而全桥吊杆同时张拉调整在经济上是不可行的。为了解决这个问题,就必须根据主梁和主缆的刚度、自重采用计算机模拟的办法,得出最佳加载程序。并在施工过程中,通过观测,对张拉力加以修正。
吊索张拉自塔柱和锚头处开始使用8台千斤顶对称张拉。吊索底端冷铸锚具,其锚杯铸有内外螺纹,内螺纹用于连接张拉时的连接杆以便千斤顶作用,外螺纹用螺母连接后将吊杆固定于锚垫板上。由于主缆在自重状态标高较高,导致吊杆在加载之前下锚头处于主梁梁体之内,因此在张拉时需配备临时工作撑脚和连接杆。
第一次张拉施加1/4的设计力将每一根吊杆临时锁定!第二次顺序与第一次相同,按设计力张拉完,然后检测每一根吊杆的实际荷载,最后根据设计力具体对每一根吊杆进行微调。在吊索的张拉过程中,塔顶与鞍座一起发生位移!塔根承受弯矩!这样有可能产生塔根应力超限的危险,为了不让塔根应力超限!张拉一定程度后,根据实际观测及计算分析!进行索鞍顶推,使塔顶回到原来无水平位移时的状态,如此反复后!将每根吊索的张拉力调整至设计值。
施工过程的控制对于自锚式混凝土悬索桥每一道工序的施工均非常重要,尤其在索部施工过程中每一阶段每一根吊索的索力都要及时准确的反馈。吊索张拉时千斤顶的油表读数是一个直观反映,另外利用智能信号采集处理分析仪通过对吊索的振动测出其所受的拉力,两种方法互相检验,确保张拉时每一根吊索的索力与设计相吻合。 (1)更优越的施工方法的研究。例如将中跨主缆锚固在主梁的底部,用转体施工,从而可以在一定程度上克服施工上的困难,但在跨径较大的情况下,如何保证转体施工时的稳定性,还需要做进一步的研究。
(2)主缆锚固点锚下应力的分布研究。
(3)当主缆外包钢管混凝土时,吊杆在主缆上的锚固方式研究。
(4)吊杆及主缆的合理张拉顺序研究。
(5)新型材料的研究和开发。
(6)受力体系及理论的进一步完善。 (1)通过国内工程时间证明,钢筋混凝土自锚式悬索桥在中小跨径上是一种既经济又美观的桥型,结构的刚度也相对较大,对于中小跨径的公路桥梁和人行桥都适合建造。
(2)对于钢筋混凝土结构的自锚式悬索桥,锚块的设计是一个关键环节,它不但影响结构的整体工作性能,也是影响桥梁的经济效益和美观要求,应给予足够的重视。
(3)自锚式悬索桥主缆的锚固形式是与地锚式的最大不同之处,根据受力大小和锚块构造要求的不同,可采取直接锚固、散开锚固和环绕式锚固等方式。
(4)由于主缆非线性的影响而使吊索张拉时的施工控制变的尤为关键。
(5)加劲梁采用钢材造价较贵,并且钢结构容易在轴力作用下压屈。而采用钢筋混凝土材料恰好可以克服这两个缺点。
尽管自锚式悬索桥有着自身的缺点和局限,但在中小跨径上是一种很有竞争力的方案。这种在20世纪曾被忽视很长一段时间的桥型随着社会的进步又得到了人们的重新认识,自锚式悬索桥的设计理论和施工方法也将趋于完善,跨越能力也会不断提高,相信在以后会有越来越多的方案倾向于这种桥型。