建材秒知道
登录
建材号 > 链条 > 正文

链传动的设计形式是什么

懦弱的板栗
稳重的小蝴蝶
2022-12-22 06:56:37

链传动的设计形式是什么?

最佳答案
合适的跳跳糖
玩命的短靴
2025-07-27 02:42:08

链传动设计形式:

1、链传动失效形式

链传动的失效形式主要有以下几种:

(1)链板疲劳破坏链在松边拉力和紧边拉力的反复作用下,经过一定的循环次数,链板会发生疲劳破坏。正常润滑条件下,链板疲劳强度是限定链传动承载能力的主要因素。

(2)滚子、套筒的冲击疲劳破坏链传动的啮入冲击首先由滚子和套筒承受。在反复多次的冲击下,经过一定循环次数,滚子、套筒可能会发生冲击疲劳破坏。这种失效形式多发生于中、高速闭式链传动中。

(3)销轴与套筒的胶合润滑不当或速度过高时,销轴和套筒的工作表面会发生胶合。胶合限定了链传动的极限转速。

(4)链条铰链磨损铰链磨损后链节变长,容易引起跳齿或脱链。开式传动、环境条件恶劣或润滑密封不良时,极易引起铰链磨损,从而急剧降低链条的使用寿命。

(5)过载拉断这种拉断常发生于低速重载的传动中。在一定的使用寿命下,从一种失效形式出发,可得出一个极限功率表达式。为了清楚,常用线图表示。为在正常润滑条件下,对应各种失效形式的极限功率曲线。图中阴影部分为实际上使用的区域。若润滑密封不良及工况恶劣时,磨损将很严重,其极限功率会大幅度下降。

2、功率曲线图

采用推荐的润滑方式时,各型号A系列滚子链所能传递的功率。若润滑不良或不采用推荐的润滑方式时,应将图中值降低;当链速v≤1.5m/s时,降低到50%;当1.5m/ss时,降低到25%;当v>7m/s而又润滑不当时,传动不可靠。张紧装置时,应将计算的中心距减小2~5mm使链条有小的初垂度。

最新回答
魔幻的篮球
疯狂的煎饼
2025-07-27 02:42:08

链条铰链磨损、链板疲劳破坏、冲击疲劳破断、链条铰链胶合、链条的静里拉断。

当功率一定是,小链轮转速较小时考虑链板疲劳强度;小链轮转速较大时考虑滚子、套筒冲击疲劳强度;小链轮转速很大时考虑销轴、套筒胶合限定。

文静的长颈鹿
瘦瘦的紫菜
2025-07-27 02:42:08
(1)链传动中,节距P越大,链的尺寸、重量和承载能力就越大,但是链节距p越大,链的多边形效应就会越明显,产生的冲击、振动和噪音越大。

(2)小链轮齿数影响链传动的平稳性和使用寿命。小链轮齿数越少,运动速度的不均匀性和载荷就越大;

小链轮齿数过大,轮廓尺寸和重量增加,易产生跳齿和脱链。

另外,链速影响传动平稳性和寿命。链速越高,多边形效应越明显,相应动载荷就越大。

要减肥的香菇
负责的大门
2025-07-27 02:42:08
基于链条传动的链轮减速器设计密封家用电炉生产线上的一台搅拌泥料的搅拌机,投产三个月后,机上使用的WPO-15型蜗轮减速器完全损坏,不能工作。电机功率7.5kw,转速 1440r/MIN,电机与蜗轮减速器间,用传动比为 1:2的皮带传动。该减速器传动比为1:40的WPO-15型蜗轮减速器,在输入转速为1500r/min时,许用功率为5.5kw,在连续工作时,负荷不能超过65%。在生产任务比较重时,该搅拌机经常10多天24小时不间断工作,在此种情况下工作,明显可看出蜗轮减速器的许用功率远小于电机的功率,属过载损坏。

该搅拌机是针对生产要求设计的非标设备。搅拌机的搅拌部分,全部使用不锈钢制造,机械传动部分安装在搅拌器的下部。空间较小,不宜选用齿轮减速器或摆线针轮减速器。如选用功率与电机匹配 WPO-20型蜗轮减速器,一是体积过大,二是价格过高。鉴于此情况,专门为该陶瓷搅拌机设计了链轮减速器。该链轮减速器的制造成本是WPO-15型蜗轮减速器的50%,经过1年多的使用,目前仍运转正常。

1 链轮减速器的结构设计 链轮减速器采用二级传动的结构,其结构示意图见图1所示。一级传动由61A、8齿的一级链轮1和49节的一级滚子链盘2组成,其传动比为8:49二级传动由24A、6齿的二级链轮 3和 39节的二级滚子链盘 4组成,其传动比为6:39,总传动比约为1:40。 2 链轮减速器的工作原理及结构特点 2.1 工作原理 链轮减速器的工作原理如图1所示。其传动过程为:一级链轮 1的轴为输入轴,通过一级链轮与一级滚子链盘2的啮合,实现一级减速。二级链轮与二级滚子链盘4的啮合,实现二级减速。

1 一级链轮;2 一级滚子链盘;3 二级链轮;4 二级滚子链盘

图1 链轮减速器的结构示意图 2.2 创新之处 一般的链条传动是由分别安装在彼此平行的主、从动轴上的两个链轮,和跨绕两链轮的闭合链条组成的。而在链轮减速器设计中,采用了链轮与链盘啮合传动,将链条变成了链盘,取代了链条和从动链轮,设计了新型的链轮减速器。 链轮减速器和齿轮减速器都是通过啮合来传递动力和运动,其传动比的计算相同。但链轮减速器的啮合是链轮的轮齿与链盘的滚子的啮合,属非共轭啮合而齿轮减速器的啮合是轮齿间的啮合,属共轭啮合。 2.3 结构特点 链轮减速器将链条的传动变成了链轮与链盘间的啮合传动,但其并不具有齿轮的传动特性,链轮减速器和齿轮减速器有着本质上的不同: (1)由于链轮减速器的啮合是非共轭啮合,因此,链轮减速器的加工、安装精度要求较低,对工作条件要求不高。 (2)链轮减速器的瞬时传动比不精确但平均传动比准确,而齿轮减速器的传动比为固定值。因此,链轮减速器的传动不平稳,产生动载荷,噪声较大,传动速度不高。

(3)链轮减速器只能在平行轴之间传递运动和动力。

(4)链轮减速器的链轮最小齿数为6齿,而齿轮减速器的链轮最小齿数为17齿。因此,在传递同等的功率下,链轮减速器比齿轮减速器的结构更紧凑。链轮减速器的结构特点决定了链轮减速器不能象齿轮减速器那样广泛使用,只适用于安装空间受限,工作条件较差或较恶劣、瞬时传动比不精确但平均传动比准确、平稳性和噪声要求不高、低速、载荷变化不剧烈、两轴平行转动,例如搅拌、物料输送等场合。链轮减速器的啮合是链轮的轮齿与链盘滚子的啮合,与链传动中链轮轮齿与链节滚子的啮合的工作原理相同,因此,链轮减速器具有链传动的大部分优点:

(1)速度无滑动损失,传动效率可达98%一卯%。

(2)允许较大传动比。

(3) 能在低速下传递较大的动力。

(4) 能在较高温度或其他恶劣的条件下工作(受气候条件变化影响小)。

(5)结构紧凑,传递同样的功率,轮廓尺寸较小。

链轮减速器也具有链传动的部分缺点: (1)传动比不是常数,圆周速度有波动,不平稳(链轮齿数越少,波动越大),在高速下易产生较大的冲击载荷。

(2)传动有噪声。

(3) 只能用于平行轴之间的传动。

图2 链盘结构 如图2所示,链条变成了链盘后,没有了链板及套筒,只有两轮辐间销轴和滚子,没有了链板伸长后节距变大所引起的失效形式,在同等规格的链轮下,其轴销直径可以比链条的轴销做得更大,链轮齿宽不受链条宽度的限制,因此,链轮减速器具有链条传动所不具有的优点: (1)结构更紧凑,在相同的链轮规格下传递更大的功率。

(2)维修成本低,链轮减速器磨损失效后只需要更换小链轮、销轴和滚子。

(3)链轮减速器既可以做成开式传动,也可以很方便设计成封闭装置。 3 链轮减速器设计时需考虑的一些因素 3.1 小链轮的齿数和节距 小链轮的齿数对链轮减速器的工作寿命有很大的影响。齿数过少时,传动的不均匀性和动载荷增大,同时,链轮的直径小,链轮轴的直径也小,链轮轴的许用功率就小,链盘所传递的圆周力随着链轮的齿数减少而增大,加速了链轮链盘的磨损。 小链轮的齿数增大,链盘所传递的圆周力减小,多边效应减少,链轮啮人链盘节间的转角减小,磨损减小。但尺寸大,重量增大。 链轮减速器是为了更紧凑的传动空间而设计的,因此链轮的最小齿数可以取zmin=06链轮减速器的第一级由于小链轮的转速高,小链轮齿数可以为812齿,链轮减速器的第二级由于小链轮的转速相对较低,小链轮齿数一般可取68齿。如果链轮减速器的安装空间允许,可以选取更大一些的小链轮齿数,以提高链轮减速器的使用寿命。 链轮减速器适合于单件产生,为了便于加工,链轮一般采用偶数齿,链盘采用奇数齿,以使链轮链盘磨损均匀。 节距ρ的大小决定着链盘链轮尺寸大小,节距越大,链轮减速器各部分尺寸越大,承载能力也随之提高,但传动的不均匀性、动载荷也越严重。 要选取合适的节距,首先要进行链轮减速器设计功率的计算,在计算出设计功率后,按图3选取相应的链轮节距,如果所选取链轮节距的额定功率与设计功率有较大偏差,可以改变链轮的齿数重新计算设计功率,再选取相应的链轮节距,在满足传递功率的情况下,尽可能取得较小的链轮节距,以求得最紧凑的链轮减速器结构。 小链轮齿数系数Kz=(z1/19)1.08 因此,小链轮齿数越少链轮减速器的设计功率就越大,所需的节距就越大。 小链轮要选取不同的齿数反复计算,以求得较少的小链轮齿数和较小的链轮节距。 3.2 链轮的转速 由于链轮减速器具有链传动的运动特性,因此,链轮的极限转速受到动载荷的限制。图3为滚子链的额定功率曲线图,图中为01种型号单列套筒滚子链的额定功率曲线,从图中可以看出,套筒滚子链的额定功随着小链轮的转速增加而增加,当链轮的转速达到某个数值后,套筒滚子链的额定功率随着小链轮的转速增加而迅速下降。因此,链轮减速器链轮的转速不宜超过套筒滚子链额定功率曲线中高峰值所对应的转速。 3.3 链轮的齿宽 由于不受链条的限制,理论上,链轮可以做成任意宽度,随着链轮齿宽的增加,链轮链盘的磨损减小,寿命增加,传递功率增大。但销轴也随着链轮齿宽的增加而增长,过长的销轴会使其刚度下降,易使链盘的销轴、滚子发生疲劳破坏。 由于链轮减速器的链轮齿数少,直径小,往往需要和链轮轴加工成一体,如图4所示。为了延长轴的使用寿命,一般推荐链轮减速器链轮的齿宽为标准链轮齿宽的2倍。 3.4 链轮的齿形 链轮减速器链轮与链盘的啮合和链传动中链轮与滚子链条的啮合一样,属非共轭啮合。其轮齿形的设计可以有较大的灵活性,BG/T1243-1997中没有规定具体的链轮齿形,仅规定了最大和最小的齿槽形状及其极限参数。在链轮减速器中,链轮是易损件,往往又和轴做成一体,因此,推荐使用GB/T1243-58规定的三圆弧一直线齿形,它具有接触应力小,磨损轻,冲击小,齿顶较高等优点。4 链轮减速器的设计计算 4.1 链轮减速器的失效形式 (1)链盘上的销轴、滚子在润滑良好情况下,疲劳破坏是其主要的失效形式润滑不当或转速过高时,发生胶合破坏。

(2)链轮的齿面过渡磨损

(3)低速重载或受冲击载荷时,链盘的销轴、滚子破损。

4.2 链轮减速器的额定功率 链轮减速器的失效形式与链传动的失效形式相比,少了链条因磨损而引起的节距变长的失效形式外,其他失效形式相同,因此,可以采用如图3的滚子链的额定功率曲线图来确定链轮减速器的额定功率。根据小链轮的转速,按图3选取相应的链轮节距,使链轮减速器的各级额定功率大于或等于设计功率。 Pd = KaP / KzKm (1) 式中,Pd为设计功率,kW;P为传递功率,kW;Kz为工况系数;Kz为小链轮齿数 Kz=(z1/19)1.08;Km为链轮齿宽系数,链轮齿宽为标准链轮齿宽时:Km=1;链轮齿宽为标准链轮齿宽的2倍时:Km=1.7;链轮齿宽为标准链轮齿宽的3倍时:Km=2.5;链轮齿宽为其它倍数时,可采用插入法求出Km。 4.3 链盘轴销剪切强度的校核 链盘圆周速度5 链轮减速器的另一结构形式 在一些低速的传动机构中,可以采用如图5所示的结构,将主动轮设计成链盘,将从动轮设计成链轮的结构形式。这种结构最大优点是维修成本较低。主动链盘的销轴和滚子是易损件,一旦损坏,可以借助简单工具,迅速更换。 但由于这种结构的链轮减速器只有一个滚子与链轮的链齿啮合,一旦轴销断裂,会使从动链轮失去动力,在设计时必须予以考虑。 6 链轮减速器的推广价值 (1)在一些安装空间受到限制、低速重载、工作环境较差的场合,适用链轮减速器。

(2)链轮减速器的设计简单、加工方便、维修容易、成本较低,适用单件生产。

(3)可形成新的链轮减速器系列。http://www.51ps.com/classlist.aspx

失眠的电灯胆
完美的蜜粉
2025-07-27 02:42:08
因为奇数链轮齿数可避免同一链齿与同一链节重复啮合,可以达到均匀磨损的效果.增加使用的寿命。

链传动:链传动是通过链条将具有特殊齿形的主动链轮的运动和动力传递到具有特殊齿形的从动链轮的一种传动方式。链传动有许多优点,与带传动相比,无弹性滑动和打滑现象,平均传动比准确,工作可靠,效率高;传递功率大,过载能力强,相同工况下的传动尺寸小;所需张紧力小,作用于轴上的压力小;能在高温、潮湿、多尘、有污染等恶劣环境中工作。 由于链节是刚性的,因而存在多边形效应(即运动不均匀性),这种运动特性使链传动的瞬时传动比变化并引起附加动载荷和振动,在选用链传动参数时须加以考虑。

稳重的大炮
落寞的大米
2025-07-27 02:42:08
链传动设计中,两链轮中心距过大或过小都不好,适宜的中心距为节距的30~50倍。不过这不是绝对的,只是推荐值。中心距过小的缺点是:不但使链条在小链轮的包角过小而发生跳齿,而且将使单位时间内链条绕转次数增加,链节的应力循环次数也增加。

所以两链轮中心距可以适当缩小,但这是以加大链条跳齿的概率和减小链条的寿命为代价的,没有最小中心距的确定值。

闪闪的小蜜蜂
精明的项链
2025-07-27 02:42:08

链传动是通过链条将具有特殊齿形的主动链轮的运动和动力传递到具有特殊齿形的从动链轮的一种传动方式。

链轮齿数

为提高链传动的运动平稳性、降低动载荷,小链轮齿数多一些为好。但小链轮齿数也不宜过多,否则 =i 会很大,从而使链传动较早发生跳齿失效。链条工作一段时间后,磨损使销轴变细、使套筒和滚子变薄,在拉伸载荷F的作用下,链条的节距伸长。链条节距变长后、链绕上链轮时节圆d向齿顶移动。一般链条节数为偶数以避免使用过渡接头。为使磨损均匀,提高寿命,链轮齿数最好与链节数互质,若不能保证互质,也应使其公因数尽可能小。

链的节距

链的节距越大,理论上承载能力越高。但如上节所述:节距越大,由链条速度变化和链节啮入链轮产生冲击所引起的动载荷越大,反而使链承载能力和寿命降低。因此,设计时应尽可能选用小节距的链,重载时选取小节距多排链的实际效果往往比选取大节距单排链的效果更好。

中心距和链长

链传动中心距过小,则小链轮上的包角小,同时啮合的链轮齿数就少;若中心距过大,则易使链条抖动。一般可取中心距a=(30~50)p,最大中心距 ≤80p。链条长度用链的节数 表示。按带传动求带长的公式可导出由此算出的链节数 须圆整为整数,最好取为偶数。 运用上式可解得由 求中心距a的公式:为便于安装链条和调节链的张紧程度,一般应将中心距设计成可调节的;或者应有张紧装置。