扭力扳手的规格型号及方榫的尺寸型号
扭力扳手的型号通常是按照扭力范围来定的,使用扭矩范围为5-25N.m,传动方榫尺寸为6.3×6.3mm的预置扭矩扳手即可测量。
中国的扭矩<=100,200,300n*m的方榫边长为12.5mm,中国的扭矩<=500n*m的方榫边长为20mm,中国的扭矩<=10n*m的方榫边长为6.3mm,中国的扭矩=750-2000n*m的方榫边长为25mm。
扩展资料:
扭力扳手使用注意事项:
1、使用扭力扳手时,应平衡缓慢地加载,切不可猛拉猛压,以免造成过载,导致输出扭矩失准。在达到预置扭矩后,应停止加载。
2、不能使用预置式扭力扳手去拆卸螺栓或螺母。
3、严禁在扭力扳手尾端加接套管延长力臂,以防损坏扭力扳手。
4、根据需要调节所需的扭矩,并确认调节机构处于锁定状态才可使用。
5、扭力扳手使用完毕,应将其调至最小扭矩,使测力弹簧充分放松,以延长其寿命。
6、应避免水分侵入预置式扭力扳手,以防零件锈蚀。
7、所选用的扭力扳手的开口尺寸必须与螺栓或螺母的尺寸相符合,扳手开口过大易滑脱并损伤螺件的六角,在进口汽车维修中,应注意扳手公英制的选择。
参考资料来源:百度百科-扭力扳手
参考资料来源:百度百科-直角方榫
规格量程是1-5N5-25N10-50N20-100N40-200N70-350N。更多介绍如下:1、分类:力矩扳手又叫扭矩扳手、扭力扳手、扭矩可调扳手是扳手的一种。按动力源可分为:电动力矩扳手、气动力矩扳手、液压力矩扳手及手动力矩扳手;手动力矩扳手可分为:预置式、定值式、表盘式、数显式、打滑式、折弯式、以及公斤扳手。2、量程:度量工具的测量范围。由度量工具的分度值、最大测量值决定。
准确度观测值和可接受的基准值之间同意的接近程度。
方差分析一咱经常用于试验设计(DOE)中的统计方法(ANOVA),用于分
析多组的计量型数据以便比较方法和分析变差源。
可视分辨率测量仪器最小增量的大小叫可视分辨率。该数值通常以文字形式(如
广告中)来划分测量仪器的分级。数据的分级数可通过把该增量的
大小划分类预期的过程分布范围(6σ)来确定。
注:显示或报告的位数不一定总表示仪器的分辨率。例如,零件的
测量值为29.075、29.080、29.095等,记录为5位数。然而该仪器的
分辨率为0.005而不是0.001。
评价人变差 在一个稳定环境中应用相同的测量仪器和方法,不同评价人(操作者)对相同零件(被测体)的测量平均值之间的变差。评价人变差(AV)是一咱由于操作者使用相同测量系统的技巧和技能产生的
差别造成的变通原因测量系统变差(误差)源。评价人变差通常被
假定为与测量系统有关的“再现性误差”,但这并不总是正确的(见
再现性)。
偏倚测量的观测平均值(在可重复条件下的一组试验)和基准值之间的
差值。传统上称变准确度。偏倚是在测量系统操作范围内对一个点
的评估和表达。
校准在规定条件下,建立测量装置和已知基准值和不确定度的可溯源标
准之间的关系的一组操作。校准可能也包括通过调整被比较的测量
装置的准确度差异而进行的探测、相关性、报告或消除的步骤。
校准周期两次校准间的规定时间总量或一组条件,在此期间,测量装置的校
准参数被认定为有效的。
能力以测量系统短期评定为基础的一种测量误差的合成变差(随机的和
系统的)的估计。
置信区间期望包括一个参数的真值的值的范围(在希望的概率情况下叫置信
水平)。
控制图一种按时间顺序以样本测量为基础的过程特性图形,(这种图形)用
于显示过程的行为,识别过程变差的形式,评价稳定性并指示过程
方向。
数据一组条件下观察结果的集合,既可以是连续的(一个量值和测量单
位)又可以是离散的(属性数据或计数数据如成功/失败、好坏、过/
不通过等统计数据)。
设计的试验一种包含一系列试验统计分析的有计划的研究,在试验中,有目的
地改变过程因子并观察结果,以便确定过程变量之间的联系并改进
过程。
分辨力(别名)又称最小可读单位,分辨力是测量分辨率、刻度限值或测
量装置和标准的最小可探测单位。它是是弄虚作假设计的一个固有
特性,并作为测量或分级的单位被报告。数据分级数通常称为“分
辨力比率”,因为它描述了给定的观察过程变差能可靠地划分为多少级。
明显的数据分级能通过测量系统有效分辨率和特定应用于下被观察过程的零件变差
可靠地区分开的数据分级或分类。见ndc。
有效分辨率考虑整个测量系统变差时数据分级大小叫有效分辨率。基于测量系
统变差的置信区间长度来确定该等级的大小。通过把该数据大小划
分为预期的过程分布范围能确定数据分级数(ndc)。对于有效分辨
率,该ndc的标准(在97%置信水平)估计值为1.41[PV/GRR]。(见
Wheeler,1989,一书中的另一种解释。)
F比在选定的置水平上,用于评估随机发生概率的一系列数据的组间均
方误差与同组内均方误差之间的数学比率的统计表达。
量具R&R(GRR)一个测量5系统的重复性和再现性的合成变差的估计。GRR变差等
于系统内和系统变差之和。
直方图分组数据的频率的一种图形表示(条形图),用来提供数据分布的直
观评价。
受控只表现出随机、普通原因变差的过程的状态(与无序、指定的或特
殊原因变差相反)。只有随机变差的过程操作是统计稳定的。
独立一个事件或变量的发生对另一个事件或变量发生的概率没有影响。
独立和相同的分布通常叫“iid”。一组同质的数据,这些数据相互独立并随机分布于一
个普通分布之中。
交互作用源于两个或多个重要变量的合成影响或结果,评价人和零件之间具
有不可附加性。评价差别依赖于被测零件。
线性测量系统预期操作范围内偏倚误差值的差别。换句话说,线性表示
操作范围内多个和独立的偏倚误差值的相关性。
长期能力对某个过程长时间内表现的子组内的统计量度。它不同于性能,因
为它不包括子组间的变差。
被测体在规定条件下被测量的特殊数量或对象;对于测量应用一个定义的
系列规范。
测量系统用于量化一个测量单位或确定被测特性性质的仪器或量具、标准、
操作、方法、夹具、软件、人员、环境、和条件的集合;用来获得
测量的整个过程。
测量系统误差由于量个偏倚、重复性、再现性、稳定性和线性产生的合成变差。
计量学测量的科学
ndc分级数。1.41(PV/GRR)
不可重复性由于被测体的动态性质决定的对相同样本或部件重复测量的不可能
性。
分级数见ndc
不受控表现出混乱的、可指定的或特殊原因变差的过程的状态。不受控的
过程即统计不稳定。
零件间变差 与测量系统分析有关,对于一个稳定过程零件变差(PV)代表预期的不同零件和不同时间的变差。
性能以测量系统长期评价为基础的测量误差(随机的和系统的)合成变
差的估计,包括所有随时间变化的显著的和可确定的变差源。
精密度测量系统在操作范围内(容量、范围和时间)的分辨力、敏感性和
重复性的净效果。在一些组织中,精密度和重复性具有互换性。事
实上,精密度最经常用于描述测量范围内的预期重复测量变差,这
个范围可以是容量和时间。通常建议使用比术语“精密”更具有描
述性的术语。
概率以已收集数据的特定分布为基础的,描述特定事件发生机会的一种
估计(用比例或分数)。概率估计值范围从0(不可能事件)到1)
必然事件)。一组条件或原因共同作用产生某种结果。
过程控制一种运行状态,将测量目的和决定准则应用迂实时生产以评估过程
稳定性和测量体或评估自然过程变差的性质。测量结果显示过程或
者是稳定和“受控 ”,或者是“不受控”。
产品控制一种运行状态,将测量目的和决定准则应用于评价测量体或评价特
性符合某规范。测量结果显示过程或是“在公差内”或者是“在公
差外”。
基准值轴承认的一个被测体的数值,作为一致同意的用于进行比较的基准
或标准样本:
l 一个基于科学原理的理论值或确定值;
l 一个基于某国家或国际组织的指定值;
l 一个基于某科学或工程组织主持的合作试验工作产生的一致同意值;
l 对于具体用途,采用接受的参考方法获得的一个同意值。
该值包括特定数量的定义,并为其它已知目的的自然接受,有时是按惯例被接受。
注:与基准值同义使用的其它术语:
已接受的基准值
已接受值
惯用值
惯用真值
指定值
最佳估计值
标准值
标准测量
回归分析两个或多个变量之间的关系的统计研究。确定两个或多个变量间数
学关系的一种计算。
重复性在确定的测量条件下,来源于连续试验的普通原因随机变差。通常
指设备变差(EV)尽管这是一个误导。当测量条件固定和已定义时,
即确定零件、仪器标准、方法、操作者、环境和假设条件,适合重
复也包括在特定测量误差模型下条件下的所有内部变差。
可重复性对相同样件或部件进行重复测量的能力,被测体或测量环境没有明
显的物理变化。
重复重复性(相同的)条件下的多次实验。
再现性测量过程中由于正常条件改变所产生的测量均值的变差。一般来说,
它被定义为在一个稳定环境下,应用相同的测量仪器和方法,相同
零件(被测体)不同评价人(操作者)之间测量值均值的变差。这
种情况对受操作者技能影响的手动仪器常常是正确的,然而,对于
操作者不是主要变差源的测量过程(如自动系统)则不正确的。由
于这个原因,再现性指的是测量系统之间和测量条件之间的均值变
差。
分辨率可用作测量分辨率或有效分辨率。测量系统探测并如实显示被测特
性微小变化的能力。(参见分辨力)
如果对与标准零件之差小于δ的任何零件的指示值与标准零件指示
值概率相等,则测量系统分辨率为δ。测量系统的分辨率受测量仪器
以及整个测量系统其它变差源的影响。
散点图数据的X-Y坐标图,用于评估两个变量之间的关系。
敏感性导致一个测量装置产生可探测(可辨别)输出信号的最小输入信号。
一个仪器应至少和其分辨力单位同样敏感。敏感性是通过固有量具
的设计与质量、服务期内维护和操作条件确定。,敏感性是用测量单
位报告的。
显著水平被选择用来测试随机输出概率的一个统计水平,也同风险有关,表
示为α风险,代表一个决定出错的概率。
稳定性既指测量过程的统计稳定性又指随时间变化的测量稳定性。两者对
测量系统预期用途都是重要的。统计稳定性包含一个可预测的、潜
在的测量过程,该过程在普通原因变差(受控)条件下运行。测量
稳定性(别名漂移)代表测量系统在运行周期(时间)内对测量标
准或基准的必要的符合程度。
容差(公差)为了维持配合、形式和功能,与标准值或公称值相比允许的偏差。
不确定度同测量结果有关的一个参数,代表数值的分散特性,此数值归结于
被测体(VIM)是合理的。在给定的置信水平内,对一个测量结果
的指定范围描述,限值期望包含真实测量结果。不确定度是一个测
量可靠性的量化表述。
单峰具有一种模式的一组邻近的数据。
主要分为单头呆扳手、双头呆扳手、活扳手、梅花扳手、多用扳手、敲击扳手、套筒扳手、套筒起子、扭力扳手、扭矩扳手、十字扳手、六角扳手、内四方扳手、管子扳手、T型扳手、L型扳手、油桶扳手、轮胎扳手、火花塞扳手、组合扳手等。
“津源”MDB系列表盘式扭矩扳手是公司自主潜心研发生产的具有国际先进水平的新一代高品质扭矩扳手。是利用指针将被测螺帽、螺栓等紧固件扭矩值直观的再表盘上指示出来,并记忆该扭矩值大小的。由扳手体、弹性元件放大机构和记忆机构等几部分组成,具有精度高、造型美观、使用方便、可靠性好、头部可更换等特点。广泛应用于航天、航空、船舶、汽车、铁路、工程机械、电力等行业,MDB表盘式扭矩扳手左右均可测量扭矩,精度±4%。 “津源”表盘式扭力扳手 型号 设定值范围 分度值N.m 总长Mm 质量kg 方榫公称尺寸mm MDB-6 0.6-6 0.1 225 0.4 6.3 MDB-12 1-12 0.2 225 0.4 6.3 MDB-25 3-25 0.5 250 0.4 10 MDB-50 5-50 0.5 332 0.6 10 MDB-100 10-100 1 380 0.7 12.5 MDB-200 20-200 2 470 1 12.5 MDB-280 30-280 3 690 1.65 20 MDB-420 40-420 5 890 2.5 20 MDB-560 50-560 5 1100 4 20 MDB-700 70-700 10 1258 5.5 20 MDB-850 100-850 10 1360 6.1 20 MDB-1000 100-1000 10 1490 6.4 25 MDB-1500 300-1500 20 1860 11.75 25 MDB-2000 400-2000 20 2270 13.39 25 MDB-3000 600-3000 50 定制 按实重 38.1 MDB-4000 800-4000 50 定制 按实重 38.1 MDB-5000 1000-5000 50 定制 按实重 44.45 MDB-8000 1600-8000 100 定制 按实重 44.4
扭距扳手发出卡塔声音的原理很简单的.可以分为以下几个步骤去理解.
1,扭距扳手在发出"卡塔"声后是提示以达到你要求的扭距值了.
2,扭距扳手所发出的"卡塔"是由本身内部的扭距释放结构产生的,其结构分为压力弹簧,扭距释放关节,扭距顶杆三结构所组成.
3,首先在扭距扳手上设定所需扭距值(由弹簧套在顶杆上向扭距释放关节施压),锁定扭距扳手开始拧紧螺栓,当螺栓达到扭距值后(当使用扭力大于弹簧的压力后)会产生瞬间脱节的效应.在产生脱节效应的瞬间发出关节敲击扳手金属外壳所发出的"卡塔"声.由此来确认达到扭距值的提醒作用.(其实就象我们手臂关节成15度弯曲放在铁管里瞬间申直后会碰到钢管的原理一样).
一、手动扳手
现阶段分为机械音响报警式,数显式,指针式(表盘式),打滑式(自滑转式)。
其中机械音响报警式,采用杠杆原理,当力矩到达设定力矩时会出现"嘭"机械相碰的声音,此后扳手会成为一个死角,及相当于呆扳手,如再用力,会出现过力现象。
数显式和指针式(表盘式)差不多,都是把作用力矩可视化。现阶段的数显和指针都是在机械音响报警式扭矩扳手的基础上工作的。
打滑式(自滑转式)采用过载保护、自动卸力模式,当力矩到达设定力矩时会自动卸力(同时也会出现机械相碰的声音),此后扳手自动复位,如再用力,会再次打滑,不会出现过力现象。此种是1,2年才出现的新感念产品。电动扭矩扳手的使用
机械音响报警式是市场的主流产品,主要体现在价格便宜,其它3种相对来说,价格昂贵。不过由于各行各业对这方面要求越来越高,以及效率的要求,数显式、指针式(表盘式)及打滑式(自滑转式)的需求会越来越高。
二、电动扳手
一般就是可以设定扭矩值的电动扳手,也叫定扭矩电动扳手。电动扭矩扳手一般用来紧固大六角高强螺栓,使用时,先把扭矩调到需要规定的扭矩,然后紧固螺栓。
电动定扭扳手分为电流式和动态扭矩传感器式两种,由控制器和拧紧轴组成。电流式定扭扳手根据电机拧紧过程中电流值的变化来判断扭力值,当达到预定扭力时,电机停止工作。动态扭矩传感器式是在拧紧轴上安装有传感器,时刻监测扭力值的变化,当达到预定扭力时,电机停止工作。
电动扭矩扳手具有精度高(±2%)、故障率低、寿命长、可编程,可对扭力和角度控制、可多种扭力选择的优点。因为拧大扭矩螺栓会有反作用力,所以一般在大扭矩拧紧工件上都会设计反作用力臂,防
止操作人员出现安全事故。
三、气动扳手
气动扭力扳手是由空压机中的压缩空气作气源,带动扭矩扳手中的气动马达驱动齿轮对螺栓进行拧紧。气动扭矩扳手分为三种:油压脉冲式、离合器式、动态扭矩传感器式。动态扭矩传感器式是当达到设定扭力值,控制器控制电磁阀断气,扳手停转。油压脉冲式和离合器式气动扭矩扳手根据扭矩值到达后通过顶针来自动断气。气动定扭扳手精度通常是±7%~12%。油压脉冲式扭矩扳手不适合打软连接螺栓,但因无反作用力而受用户喜爱。
扭矩扳手常见的几种单位:国际通用公制单位为牛顿·米(N.m),英制的扭矩单位则是英尺·磅(ft.lb)、磅·英寸(lb.in)。
单位的换算:
1千克力(kgf)=9.81牛(N)
1牛顿(N)=0.225磅力(lbf)=0.102千克力(kgf)
1磅力(lbf)=4.45牛顿(N) 1达因(dyn)=10-5牛顿(N)
扩展资料
扭矩 = 力 x 力臂 。举个例子,力臂(也就是扳手)长1m,施加100N的力,扭矩就为100N.m 。
扭矩的观念在学生时代的杠杆原理就说明过了,定义就是“垂直方向的力乘以与旋转中心的距离”。
古希腊物理学家阿基米德说过“给我一个支点,我将翘起整个地球”,在当时别人都以为他疯了,之后在物理学上被证实,在理论上是可行的,人的力量微小,但只要杆够长,力也就无限被放大,同为这个道理。
参考资料
百度百科-力矩
百度百科-英尺磅
1、根据螺栓或者螺帽所需要的扭矩值,来确定预设的扭矩值,一般车辆轮胎螺丝的扭矩是110-150N·m,具体最好参考一下你的车辆使用手册;
2、在预设扭矩值的时候,要把扭力扳手手柄上面的锁定环给往下拉,并且旋转手柄,将微分刻度线数值和标尺主刻度线调节到所需要的扭矩值;
3、调节完成之后,就可以松开手柄上面的锁定环,手柄就会自动锁定了;
4、使用相应规格的套筒安装挂在扳手方榫,再把紧固件给牢牢套住,最后缓慢对手柄进行用力。在用力的时候一定要按照标明的牵头方向进行,拧紧到发出咔哒的信号时,就可以停止用力了。
1/4 ,3/8,1/2,3/4指的是扭力扳手棘轮头部的方块的大小,也就是接套筒的那个方块!
力矩扳手就是紧固螺栓的,高强螺栓可分为扭剪型和大六角型两种,国标扭剪型高强螺栓为M16、M20、M22、M24四种,现在也有非国标的M27、M30两种;国标大六角高强螺栓为M16、M20、M22、M24、M27、M30等几种。
一般的对于高强螺栓的紧固都要先初紧再终紧,而且每步都需要有严格的扭矩要求。大六角高强螺栓的初紧和终紧都必须使用定扭矩扳手。
扩展资料:
选购参数参考:
1、手柄人体工程学优化设计,握持舒适,大大降低高强度操作时产生的疲劳感。
2、双刻度尺,可精确设定扭矩值。
3、达到设定扭矩值时,发出清晰的咔嗒声,并且在手柄上可感觉到轻微震动。
4、锁定环靠近虎口处,可避免误操作改变设定扭矩值。
5、扳手长度:167—1680MM。
6、驱动方尺寸有1/4、3/8/、1/2、3/4、1英寸等。
参考资料来源:百度百科-力矩扳手