链条炉sncr脱硝喷枪安装在什么位置
链条炉 主要安装喷射位置建议在烟气出口前2-3M,火焰上方位置,温度控制在950度以上位置,如果温度没有这么高控制在850度以上的位置,炉膛两边错位对喷。这样效果最佳。希望能帮到你!
SNCR工作原理:选择性非催化还原(SNCR)脱硝工艺是将含有 NHx 基的还原剂(如氨气、 氨水或者尿素等)喷入炉膛温度为850℃-1150℃的区域,还原剂通过安装在屏式过热器区域的喷枪喷入,该还原剂迅速热分解成 NH3和其它副产物,随后 NH3 与烟气中的 NOx 进行 SNCR 反应而生成 N2和H2O。
SNCR 脱硝技术是一种较为成熟的商业性NOx控制处理技术,SNCR脱硝方法主要是将还原剂在850~1150 ℃温度区域喷入含 NOx 的燃烧产物中,发生还原反应脱除 NOx , 生成氮气和水。
相关信息:
SNCR 脱硝在实验室试验中可达到 90%以上的 NOx脱除率,在大型锅炉应用上,短期示范期间能达到75%的脱硝效率。
SNCR 脱硝技术是 20世纪 70 年代中期在日本的一些燃油、燃气电厂开始应用的,80 年代末欧盟国家一些燃煤电厂也开始了SNCR 脱硝技术的工业应用,美国 90 年代初开始应用 SNCR 脱硝技术,目前世界上燃煤电厂SNCR 脱硝工艺的总装机容量在 2GW 以上。
SNCR烟气脱硝技术的脱硝效率一般为30%~80%,受锅炉结构尺寸影响很大。采用SNCR技术,目前的趋势是用尿素代替氨作为还原剂。
技术原理:
在850~1100℃范围内,NH3或尿素还原NOx的主要反应为:
NH3为还原剂 4 NH3 + 4NO +O2 → 4N2 + 6H2O
尿素为还原剂 NO+CO(NH2)2+1/2O2 → 2N2 + CO2 + H2O
系统组成:
SNCR系统烟气脱硝过程是由下面四个基本过程完成:
接收和储存还原剂;在锅炉合适位置注入稀释后的还原剂;
还原剂的计量输出、与水混合稀释;还原剂与烟气混合进行脱硝反应。
技术特点:
技术成熟可靠,还原剂有效利用率高系统运行稳定 设备模块化,占地小,无副产品,无二次污染。
烟气脱硝系统构成
脱硝系统基本流程和添加剂效果:
基于纯氨、氨水和尿素的溶液(比如satamin和carbamin二次添加剂)目前在很大程度上比较流行。
通过选择性非催化还原法,氨基在800℃-1050℃时NO生成氮气和水蒸气:
NH2+NO <=> H2O+N2
当使用含氨化合物的水溶液时,化合物分解就会释放出氨气。换言之,只有在雾化流体蒸发后氨气才可以从含氨化合物中挥发出来。
自由基之间的反应选择性并不是很强。因此充足的脱除添加剂还是必要的。图1显示了烟气温度950℃时化学配比因子NSR与NOx脱除量的关系。
流程设计和装置描述:
燃料添加剂贮存加料装置
Satamin添加剂是一种专利产品。根据锅炉大小和每年的燃料消耗量,Satamin添加剂一般以每桶200,500和1000公升桶装形式供给。 对于大型装置,一般设置一个较大的储罐和加料控制器,Satamin和Carbamin是低氨水溶液。因而,在贮料箱的充料过程中,或万一贮料箱遭到破坏,在储存位置附近将不会有有毒气体逸出。储罐中放置一个夹层箱或贮存箱足够使用。如果设备放在室外,贮料箱要考虑伴热或保温,放液区要作防水处理。在充料过程中必须关闭雨水排水阀。罐车利用压缩气来卸液。当往NOx脱除车间输送脱除添加剂时,需要使用磁耦合泵和潜液泵。
混合和分配系统:
还原剂用水稀释。可以使用自来水或井水来稀释Satamin和Carbamin还原剂。
如果燃料中没有加入防止高低温腐蚀的添加剂,可以通过混合和分配系统加入注入系统稀释后还原剂的加料系统依赖于燃烧室的几何尺寸。带有单相喷嘴的水冷喷枪在锅炉的应用中非常成功。双相喷嘴使用压缩空气的喷枪适合于层燃锅炉。
二次排放:
燃烧富硫燃料(>0.5%的S),温度小于350℃时,烟气中高的NH3浓度能够形成硫酸氨。和硫酸氢氨不一样,硫酸氨是一种无污染的副产物。在温度小于160℃时,硫酸氢氨的形成与烟气中SO3量和NH3量有关。硫酸氢氨容易导致换热器表面结垢腐蚀。但是,通过使用配制合理的脱除添加剂(Satamin和Carbamin产品),就可以避免硫酸氢氨的形成。 改进后的SNCR装置氨排放允许值依赖于锅炉大小,为5—30mg/m3。 NOx脱除装置的设计是根据使用添加剂satamin和carbamin,该系统不影响锅炉效率。反应热量与稀释水蒸发热量相当。
附:SNCR 和SCR 的区别
SNCR脱硝技术即选择性非催化还原(Selective Non-Catalytic Reduction,以下简写为SNCR)技术,是一种不用催化剂,在850~1100℃的温度范围内,将含氨基的还原剂(如氨水,尿素溶液等)喷入炉内,将烟气中的NOx还原脱除,生成氮气和水的清洁脱硝技术。 在合适的温度区域,且氨水作为还原剂时,其反应方程式为: 4NH3 + 4NO + O2→4N2 + 6H2O (1) 然而,当温度过高时,也会发生如下副反应: 4NH3 + 5O2→4NO + 6H2O(2) SNCR烟气脱硝技术的脱硝效率一般为30%~80%,受锅炉结构尺寸影响很大。采用SNCR技术,目前的趋势是用尿素代替氨作为还原剂。
SNCR脱硝原理
SNCR 技术脱硝原理为: 在850~1100℃范围内,NH3或尿素还原NOx的主要反应为: NH3为还原剂: 4NH3 + 4NO +O2 → 4N2 + 6H2O 尿素为还原剂 : NO+CO(NH2)2 +1/2O2 → 2N2 + CO2 + H2O SNCR脱硝系统组成: SNCR(喷氨)系统主要由卸氨系统、罐区、加压泵及其控制系统、混合系统、分配与调节系统、喷雾系统等组成。 SNCR系统烟气脱硝过程是由下面四个基本过程完成: 接收和储存还原剂;在锅炉合适位置注入稀释后的还原剂; 还原剂的计量输出、与水混合稀释;还原剂与烟气混合进行脱硝反应。 SNCR脱硝工艺流程 如图(二)所示,水泥窑炉SNCR烟气脱硝工艺系统主要包括还原剂储存系统、循环输送模块、稀释计量模块、分配模块、背压模块、还原剂喷射系统和相关的仪表控制系统等。
SNCR脱硝工艺流程图
SNCR脱硝设备
序 号 名称 数量 单位 1 氨水加压泵组 1 套 2 稀释水加压泵组 1 套 3 稀释水与氨水混合阀组 1 套 4 上层稀氨水分配阀组 1 套 5 下层稀氨水分配阀组 1 套 6 喷雾系统sncr脱硝喷枪 1 套 7 储罐及卸氨系统 1 套 8 压缩空气系统 1 套 9 仪表、电气控制系统 1 套 10 罐区厂房 1 个
SNCR(选择性非催化还原脱硝)技术SNCR脱硝技术原理SNCR工艺以炉膛作为反应器,是目前旧机组脱硝技术改造时主要采用的脱硝技术。
SNCR脱硝工艺流程:将满足要求的尿素固体颗粒卸至尿素储料仓,由计量给料装置进入配液池,在加热的条件下,用工艺水将尿素固体颗粒配制成尿素溶液,经配料输送泵送至溶液储罐。
扩展资料:
注意事项:
温度窗口就是脱硝反应的最佳炉膛温度区间。若反应温度过低,还原剂与 NOx 没有足够的活化能使脱硝反应快速进行,导致脱硝效率降低。但温度过高,尿素本身也会被氧化成 NOx ,从而增加 NOx 的排放、脱硝效率下降。可以预见,脱硝效率与反应温度的关系曲线试为一条开口向下的抛物线,抛物线顶点左右两侧的区间即是温度窗口。
以尿素为还原剂的SNCR,温度窗口在900-1150℃。机组不同的负荷对应于锅炉的炉膛温度分布也不相同,所以用于向炉膛中喷入还原剂的喷射器也是分若干层布置的,以适应不同锅炉负荷。一般来说,SNCR温度窗口大体对应于锅炉燃烧器上部至折焰角之间的区域。
参考资料来源:百度百科-SNCR
参考资料来源:百度百科-脱硝
该技术一般采用炉内喷氨、尿素或氢氨酸作为还原剂还原 NOx 。由于该工艺不用催化剂,因此必须在高温区加入还原剂。还原剂喷入炉膛温度为 850 ~ 1100℃ 的区域,迅速热分解成 NH3,与烟气中的NOx反应生成N2和水。
但是,NOx排放量达不到100mg/Nm3以下。一般还要加装烟气尾部脱硝装置(SCR),组成SNCR/SCR联合脱硝工艺。
目前主流是直接上SCR。使用催化剂催化还原。