陶瓷被我们用于哪些方面?
由于陶瓷具有质硬、耐磨损、电绝缘、耐酸碱腐蚀、耐火、对液体和气体无渗透性、化学稳定性好等特性,在建筑上被广泛用于地砖、墙砖、排水管、卫生洁具等;在化工领域,陶瓷被用于制造各种容器、管道、阀门、液体泵、坩埚、蒸发皿、燃烧舟、研钵、反应釜和各种高温工业窑炉的耐火材料;在电力方面,用于制造高低压输电线路上的绝缘子、电机用套管、绝缘支柱、低压电器和照明用具等。
近年来,陶瓷的应用范围更进一步拓展到光学、电子计算机、通信、航空航天、核能、机械、新能源、激光、生物医药等尖端科技领域,出现了许多新的陶瓷制造工艺和品种,已形成一个巨大的高新技术产业。这些新型陶瓷材料统称为特种陶瓷或先进技术陶瓷,一般分为结构陶瓷、功能陶瓷和陶瓷基复合材料三类。
氮化硅、碳化硅、碳化硼、二硼化钛等超硬质结构陶瓷具有高强度、高硬度、耐磨损、重量轻等性能,可用来制造人造金刚石、地质钻头、机床高速和精密切削刀具、模具、磨料和磨具、轴承、轴瓦、汽车发动机活塞、水轮机叶片和坦克装甲等。
氧化硅陶瓷能耐1728℃高温,氧化铝陶瓷能耐2050℃,氧化锆陶瓷能耐2690℃,氧化镁陶瓷能耐3105℃。这些高温结构陶瓷可制造飞机喷气发动机和火箭发动机喷嘴、燃烧室内衬、燃气轮机叶片、红外光源、高温传感器探头、磁流体发电通道材料和电极等。
陶瓷分为传统陶瓷与现代技术陶瓷。
传统陶瓷主要用于餐具、日用容器、工艺品及普通建筑材料。
现代陶瓷主要有结构陶瓷、陶瓷基复合材料、功能陶瓷。
结构陶瓷主要用于发动机汽缸套、轴瓦、密封圈、陶瓷切削刀具。
陶瓷基复合材料主要在军械和航空航天领域。
功能陶瓷被广泛用于电绝缘体,在计算机、精密仪器领域得到广泛应用。
食
陶瓷器在食的方面是最多样化的,中国人讲究吃的艺术,对餐具的样式也很考究,碗类有菜碗、饭碗、汤碗,盘子有大有小、有方有圆、有深有浅,随著用餐的规模和气氛来选用。
衣
陶瓷在衣的方面,大多是以衣服的配件或是装饰品的型态呈现;尤其是在古代金属制品尚未普遍的时代,人类的饰品多以石制或陶制为主。现在仍有许多饰品是用陶瓷制成,如衣扣、袖扣、项鍊、耳坠......等,都具陶瓷之美而深受喜爱。
住
住宅内外最常见的就是磁砖、地砖了,在现代建筑中是最重要的建材之一,是建筑物呈现在外表闪亮多彩的外衣;在古代建筑中,陶瓷却是主要的架构骨材,如屋瓦、砖块......等,都是不可或缺的建筑材料。
行
多是以道路设施为主,如人行道的铺砖即是,比较特殊的是高速公路上用来分隔车的圆形标线砖是用陶瓷做的,其原因是陶瓷能在夜间清楚地反射车辆的灯光,让驾驶容易辨认车道;同时能承受高度通过时的碾压。而目前正在销售的汽机车陶瓷引擎,和太空梭外表所使用的耐高温绝缘体,更是一大贡献。
1、日用陶瓷:如餐具、茶具、缸,坛、盆、罐、盘、碟、碗等。
青花骨瓷四头文具斗彩荷花
2、艺术(工艺)陶瓷:如花瓶、雕塑品、园林陶瓷、器皿、相框、壁画、陈设品等。
3、工业陶瓷:指应用于各种工业的陶瓷制品。又分以下4各方面:
①建筑一卫生陶瓷: 如砖瓦,排水管、面砖,外墙砖,卫生洁具等;
②化工(化学)陶瓷:
用于各种化学工业的耐酸容器、管道,塔、泵、阀以及搪砌反应锅的耐酸砖、灰等;
③电瓷: 用于电力工业高低压输电线路上的绝缘子。电机用套管,支柱绝缘子、低压电器和照明用绝缘子,以及电讯用绝缘子,无线电用绝缘子等;
④特种陶瓷:
用于各种现代工业和尖端科学技术的特种陶瓷制品,有高铝氧质瓷、镁石质瓷、钛镁石质瓷、锆英石质瓷、锂质瓷、以及磁性瓷、金属陶瓷等。
扩展资料
陶瓷特性
陶质材料:与瓷相比,陶的质地相对松散,颗粒也较粗,烧制温度一般在900℃—1500℃之间,温度较低,烧成后色泽自然成趣,古朴大方,成为许多艺术家所喜爱的造型表现材料之一。
陶的种类很多,常见的有黑陶、白陶、红陶、灰陶和黄陶等,红陶、灰陶和黑陶等采用含铁量较高的陶土为原料,铁质陶土在氧化气氛下呈红色,还原气氛下呈灰色或黑色。
瓷质材料:与陶相比,瓷的质地坚硬、细密、严禁、耐高温、釉色丰富等特点,烧制温度一般在1300℃左右,常有人形容瓷器“声如磬、明如镜、颜如玉、薄如纸”,瓷多给人感觉是高贵华丽,和陶的那种朴实正好相反。
所以在很多艺术家创作陶瓷艺术品时会着重突出陶或瓷的质感所带给欣赏者截然不同的感官享受,因此,创作前对两种不同材料的特征的分析与比较是十分必要的。
参考资料:百度百科-陶瓷
(一)按用途的不同分类
1.日用陶瓷:如餐具、茶具、缸,坛、盆、罐、盘、碟、碗等。
2.艺术{工艺}陶瓷:如花瓶、雕塑品、园林陶瓷、器皿、 陈设品等。
3.工业陶瓷:指应用于各种工业的陶瓷制品。又分以下6各方面:
①建筑一卫生陶瓷: 如砖瓦,排水管、面砖,外墙砖,卫生洁其等;
②化工{化学}陶瓷: 用于各种化学工业的耐酸容器、管道,塔、泵、阀以及搪砌反应锅的耐酸砖、灰等;
③电瓷: 用于电力工业高低压输电线路上的绝缘子。电机用套管,支柱绝缘于、低压电器和照明用绝缘子,以及
电讯用绝缘子,无线电用绝缘子等;
④特种陶瓷: 用于各种现代工业和尖端科学技术的特种陶瓷制品,有高铝氧质瓷、镁石质瓷、钛镁石质瓷、锆英
石质瓷、锂质瓷、以及磁性瓷、金属陶瓷等。
(二)按所用原料及坯体的致密程度分类可分为:
粗陶(brickware or terra-cotta), 细陶 (potttery),炻器 (stone Ware),半瓷器 (semivitreous china),以至瓷器(130relain),原料是从粗到精,坯体是从粗松多孔,逐步到达致密,烧结,烧成温度也是逐渐从低趋高。
粗陶是最原始最低级的陶瓷器,一般以一种易熔粘土制造。在某些情况下也可以在粘土中加入熟料或砂与之混合,以减少收缩。这些制品的烧成温度变动很大,要依据粘土的化学组成所含杂质的性质与多少而定。以之制造砖瓦,如气孔率过高,则坯体的抗冻性能不好,过低叉不易挂住砂浆,所以吸水率一般要保持5~15%之间。烧成后坯体的颜色,决定于粘土中着色氧化物的含量和烧成气氛,在氧化焰中烧成多呈黄色或红色,在还原焰中烧成则多呈青色或黑色。
我国建筑材料中的青砖,即是用含有Fe2O3的黄色或红色粘土为原料,在临近止火时用还原焰煅烧,使Fe203还原为FeON成青色,陶器可分为普通陶器和精陶器两类。普通陶器即指土陶盆.罐、缸、瓮.以及耐火砖等具有多孔性着色坯体的制品。精陶器坯体吸水率仍有4~1 2%,因此有渗透性,没有半透明性,一般白色,也有有色的。釉多采用含铅和硼的易熔釉。它与炻器比较,因熔剂宙量较少,烧成温度不超过1300℃,所以坯体增未充分烧结;与瓷器比较,对原料的要求较低,坯料的可塑性较大,烧成温度较低。不易变形,因而可以简化制品的成形,装钵和其他工序。但精陶的机械强度和冲击强度比瓷器.炻器要小,同时它的釉比上述制品的釉要软,当它的釉层损坏时,多孔的坯体即容易沾污,而影响卫生。
精陶按坯体组成的不同,又可分为:粘土质、石灰质,长石质、熟料质等四种。粘土质精陶接近普通陶器。石灰质精陶以石灰石为熔剂,其制造过程与长石质精陶相似,而质量不及长石质精陶,因之近年来已很少生产,而为长石质精陶所取代。长石质精陶又称硬质精陶,以长石为熔剂。是陶器中最完美和使用最广的一种。近世很多国家用以大量生产日用餐具(杯、碟盘予等)及卫生陶器以代替价昂的瓷器。热料精陶是在精陶坯料中加入一定量熟料,目的是减少收缩,避免废品。这种坯料多应用于大型和厚胎制品(如浴盆,太的盥洗盆等)。
炻器在我国古籍上称“石胎瓷”,坯体致密,已完全烧结,这一点已很接近瓷器。但它还没有玻化,仍有2%以下的吸水率,坯体不透明,有白色的,而多数允许在烧后呈现颜色,所以对原料纯度的要求不及瓷器那样高,原料取给容易。炻器具有很高的强度和良好的热稳定性,很适应于现代机械化洗涤,并能顺利地通过从冰箱到烤炉的温度急变,在国际市场上由于旅游业的发达和饮食的社会化,炻器比之搪陶具有更大的销售量。
半瓷器的坯料接近于瓷器坯料,但烧后仍有3~5%的吸水率(真瓷器,吸水率在0.5%以下),所以它的使用性能不及瓷器,比精陶则要好些。
瓷器是陶瓷器发展的更高阶段。它的特征是坯体已完全烧结,完全玻化,因此很致密,对液体和气体都无渗透性,胎薄处星半透明,断面呈贝壳状,以舌头去舔,感到光滑而不被粘住.硬质瓷具有陶瓷器中最好的性能。用以制造高级日用器皿,电瓷、化学瓷等。
软质瓷 (soft porcelain) 的熔剂较多,烧成温度较低,因此机械强度不及硬质瓷,热稳定性也较低,但其透明度高,富于装饰性,所以多用于制造艺术陈设瓷。至于熔块瓷 (Fritted porcelain) 与骨灰磁 (bone china),它们的烧成温度与软质瓷相近,其优缺点也与软质瓷相似,应同属软质瓷的范围。这两类瓷器由于生产中的难度较大(坯体的可塑性和干燥强度都很差,烧成时变形严重),成本较高,生产并不普遍。英国是骨灰瓷的著名产地,我国唐山也有骨灰瓷生产。
特种陶瓷是随着现代电器,无线电、航空、原子能、冶金、机械、化学等工业以及电子计算机、空间技术、新能源开发等尖端科学技术的飞跃发展而发展起来的。这些陶瓷所用的主要原料不再是粘土,长石,石英,有的坯休也使用一些粘土或长石,然而更多的是采用纯粹的氧化物和具有特殊性能的原料,制造工艺与性能要求也各不相同。
结构陶瓷是以强度、刚度、韧性、耐磨性、硬度、疲劳强度等力学性能为特征的材料。
2 应用于提高陶瓷材料的超塑性
只有陶瓷粉体的粒度小到一定程度才能在陶瓷材料中产生超塑性行为,其原因是晶粒的纳米化有助于晶粒间产生相对滑移,使材料具有塑性行为。
纳米陶瓷的超塑性在电子、磁性、光学以及生物陶瓷方面有潜在应用。纳米陶瓷可能具有的低温超塑性、延展性和极高的断裂韧性,将使其成为兼具陶瓷和金属的优良特性(如高强度、高硬度、高韧性、耐高温、耐腐蚀、易加工等)的新结构和功能材料,在航空、航天、机械、电子信息等众多领域具有无限广阔的应用前景。
3 应用于制备电子(功能)陶瓷
纳米陶瓷粉体之所以广泛地用于制备电子陶瓷,原因在于陶瓷粉体晶粒的纳米化会造成晶界数量的大大增加,当陶瓷中的晶粒尺寸减小一个数量级,则晶粒的表面积及晶界的体积亦以相应的倍数增加。
4 应用于制备陶瓷工具刀
纳米技术的出现以及纳米粉体的工业化生产,使得制备金属陶瓷刀成为现实。
能量转换,大多数人都很容易理解。例如,电灯把电能转化成为光能和热能;电动机带动水泵把水抽到山坡的梯田上;大坝下的水轮机带动发电机发电,是把机械能转化为电能……但是,你可知道,有一种压电陶瓷,它能使机械能和电能互相转换,为我们做许许多多有益的事情。
100多年前居里兄弟是在研究石英时发现的压电现象。我们在上面提到的压电陶瓷,是一种先进功能陶瓷,它具有压电效应。
那么,什么是压电效应呢?
当你在点燃煤气灶或热水器时,就有一种压电陶瓷已悄悄地为你服务了一次。生产厂家在这类压电点火装置内,设置着一块压电陶瓷,当用户按下点火装置的弹簧时,传动装置就把压力施加在压电陶瓷上,使它产生很高的电压,进而将电能引向燃气的出口放电。这样,燃气就被电火花点燃了。压电陶瓷的这种功能就被称为压电效应。
压电效应的原理是,如果对压电陶瓷施加压力,它便会产生电位差(称之为正压电效应);反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。简言之,压电陶瓷具有机械能与电能之间的转换和逆转换的功能。
压电陶瓷的用途十分广泛。据粗略统计,压电陶瓷至少有20多种用途。
近年来,煤气公司出售的一种新式的电子打火机,就是利用压电陶瓷的压电效应制成的。大家假如在中午要自己把饭菜热一下,你一定有这方面的“经验”:只要用大拇指压一下打火机上的按钮,压电陶瓷即产生高电压,形成火花放电,从而点燃煤气。当压电陶瓷把机械能转换成电能放电时,陶瓷本身不会消耗,也几乎没有磨损,可以长久使用下去。因此,压电打火机使用方便,安全可靠,寿命长。据煤气公司销售人员介绍,一把压电打火机可使用30万次以上。以每年使用3000次计算,约可以使用100年。
地震这一自然现象,一直显得异常狰狞可畏。地球每年发生的地震大约有几百万次,其中人能感觉到的约为几万次,约占1%。20世纪以来,已发生10次破坏性大地震,其中有4次发生在中国。
大地震一旦发生,对人类造成的灾难是毁灭性的。因此,地震预报十分重要。由于压电陶瓷的压电效应十分敏锐,能精确地测出地壳内细微的变化,甚至可以检测到10多米外昆虫拍打翅膀引起的空气振动。所以,压电地震仪能精确地测出地震强度。由于压电陶瓷能测定声波的传播方向,因此,压电地震仪还能告诉人们地震的方位和距离。有压电地震仪来预报地震,人们便可以要安心的生活和学习了。
在军事上,人们在制造穿甲弹的时候,常常把压电陶瓷安装在弹头部位。只要穿甲弹一击中坦克,压电陶瓷产生的高压电就会把炸药点燃而使其爆炸,把坦克炸得粉碎。
另外,通过正压电效应,把机械振动转换为交流电信号,可用来制造压电拾音器、扬声器、蜂鸣器、超声波接收探头等,其中电子音乐贺卡就是利用这种原理的实例。反之,通过逆压电效应,将交流电信号转换为机械振动,可用于制造超声波发射仪、压电扬声器、录像机和录音机的传动装置以及超声波清洗剂。此外,许多高转换效率、高灵敏度的声波发射和接收的压电器件正服役于超声波的水下探测仪,材料的超声波无损探伤仪,探测海洋中鱼群的规模、种类、密集程度、方位和距离,潜水艇位置的水下声纳,超声波断层摄影装置,大功率超声波碎石仪等各种仪器。
压电陶瓷具有加工成型方便、成本低、压电特性便于控制等优点,故应用范围正在不断扩大,前景不可估量。
随着科学技术的不断发展,汽车的研发及生产阶段越来越多地采用新材料及新工艺,这也使得人们对汽车轻质化、低成本、智能化、经济性和可靠性的要求成为可能,而对于新材料的使用,我国古代的发明——陶瓷便是其中之一。
对于陶瓷,按材料及烧制工艺的不同通常分为传统陶瓷和特种陶瓷两大类。传统陶瓷以天然硅酸盐矿物为原料烧制而成,也叫硅酸盐陶瓷。与之相区别,人们将近代发展起来的各种陶瓷总称为特种陶瓷,也称为新型陶瓷、高技术陶瓷或精细陶瓷。特种陶瓷以精制高纯的化工产品为原料,在化学组成、内部结构、性能和使用效能等各方面均不同于传统陶瓷。特种陶瓷具有各种优异、独特的性能,应用在汽车上,对减轻车辆自身质量、提高发动机热效率、降低油耗、减少排气污染、提高易损件寿命、完善汽车智能性功能都具有积极意义。
陶瓷材料在汽车上的应用
1、 陶瓷在汽车传感器上的应用
对汽车用传感器的要求是能长久适用于汽车特有的恶劣环境(高温、低温、振动、加速、潮湿、噪声、废气),并应当具有小型轻量,重复使用性好,输出范围广等特点。陶瓷耐热、耐蚀、耐磨及其潜在的优良的电磁、光学机能,近年来随着制造技术的进步而得到充分利用,陶瓷传感器完全能够满足上述要求。
2 、陶瓷在汽车发动机上的应用
新型陶瓷是碳化硅和氮化硅等无机非金属烧结而成。与以往使用的氧化铝陶瓷相比,强度是其三倍以上,能耐1000摄氏度以上高温,新材料推进了汽车上新用途的开发。例如:要将柴油机的燃耗费降低30%以上,可以说新型陶瓷是不可缺少的材料。现在汽油机中,燃烧能量中的78%左右是在热能和热传递中损失掉的,柴油机热效率为33%,与汽油机相比已十分优越,然而仍有60%以上的热能量损失掉。因此,为减少这部分损失,用隔热性能好的陶瓷材料围住燃烧室进行隔热,进而用废气涡轮增压器和动力涡轮来回收排气能量,有试验证明,这样可把热效率提高到48%。
同时,由于新型陶瓷的使用,柴油机瞬间快速起动将变得可能。采用新型陶瓷的涡轮增压器,它比当今超耐热合金具有更优越的耐热性,而比重却只有金属涡轮的约三分之一。因此,新型陶瓷涡轮可以补偿金属涡轮动态响应低的缺点。其他正在进行研究的有:采用新型陶瓷的活塞销和活塞环等运动部件。由于重量的减轻,发动机效率可望得到提高。
3 、陶瓷在汽车制动器上的应用
陶瓷制动器是在碳纤维制动器的基础上制造而成的。一块碳纤维制动碟最初由碳纤维和树脂构成,它被机器压制成形,之后经过加热、碳化、加热、冷却等几道工序制成陶瓷制动器,陶瓷制动器的碳硅化合物表面的硬度接近钻石,碟片内的碳纤维结构使它坚固耐冲击,耐腐蚀,让碟片极为耐磨。目前此类技术除了在F1赛车中应用,在超级民用跑车中也有涉及,例如奔驰的CL55 AMG。
4、 陶瓷在汽车减振器上的应用
高级轿车的减振装置是综合利用敏感陶瓷正压电效应、逆压电效应和电致伸缩效应研制成功的智能减振器。由于采用高灵敏度陶瓷元件,这种减振器具有识别路面且能做自我调节的功能,可以将轿车因粗糙路面引起的振动降到最低限度。
5、 陶瓷在汽车喷涂技术上的应用
近年来,在航天技术中广泛应用的陶瓷薄膜喷涂技术开始应用于汽车上。这种技术的优点是隔热效果好、能承受高温和高压、工艺成熟、质量稳定。为达到低散热的目标,可对发动机燃烧室部件进行陶瓷喷涂,如活塞顶喷的氧化锆,缸套喷的氧化锆。经过这种处理的发动机可以降低散热损失、减轻发动机自身质量、减小发动机尺寸、减少燃油消耗量。
有待解决的问题
特种陶瓷是正在不断开发中的材料,但原料的制取、材料的评价和利用技术等许多方面都有尚待解决的课题。目前,特种陶瓷在汽车的应用并不广泛,其中的主要原因有:
1、制造工艺复杂、要求高
2、因特种陶瓷对原材料要求比较严格、工艺难以掌握,使得各批制品的性能难以保持均匀一致
3、成本较高,可加工性差、脆性大、使用可靠性差。
但我们有充分的理由相信,随着科学技术的飞速发展,在未来的汽车制造业中将会有更多的特种陶瓷、智能陶瓷制品被引入和采用到汽车上,而且一定会在汽车生产中得到广泛的应用。
陶瓷的分类及特点
陶瓷的性能由两种因素决定。首先是物质结构,主要是化学键的性质和晶体结构。它们决定陶瓷材料的性能,如耐高温性、半导体性及绝缘性等。其次是显微组织,包括分布、晶粒大小、形状、气孔大小和分布、杂质、缺陷等。
普通陶瓷
普通陶瓷是用粘土、长石、石英为原料, 经配制、烧结制成。这类陶瓷质地坚硬、不会氧化生锈、耐腐蚀、不导电、能耐一定高温、加工成型性好、成本低,但强度较低。一般最高使用温度不超过1200摄氏度,这类陶瓷产量大,种类多,广泛用于电气、化工等行业。
氧化铝陶瓷
氧化铝陶瓷又称高铝陶瓷,主要成分是氧化铝和氧化硅。它强度大、硬度高、耐腐蚀、绝缘性好,耐热温度可达1600摄氏度,但缺点是脆性大,抗震性差,工艺复杂,成本高。氧化铝陶瓷出色的高温性能和介电性能,使其适宜制作发动机火花塞;好的耐磨性可保证制作的活塞能够加工到相当高的精度和粗糙度。
碳化硅陶瓷
碳化硅陶瓷是用碳化硅粉,用粉末冶金法经反应烧结或热压烧结工艺制成。碳化硅陶瓷最大特点是高温强度大、热稳定性好、耐磨抗蠕变性好。适用于浇注金属用的喉嘴、热电偶套管、燃气轮机的叶片、轴承等零件。同时由于它的热传导能力高,还适用于高温条件下的热交换器材料,也可用于制作各种泵的密封圈。
氮化硅陶瓷
氮化硅陶瓷原料丰富、加工性好,可以用低成本生产出各种尺寸精确的部件,特别是形状复杂的部件,成品率比其他陶瓷材料高。氮化硅陶瓷抗温度急变性好,硬度高,其硬度仅次于金刚石、氮化硼等物质,用氮化硅陶瓷材料制造发动机,由于工作温度提高到1370摄氏度,发动机效率可提高30%。同时由于温度提高,可使燃料充分燃烧,排出的废气中污染成分大幅度下降,不仅降低能耗,并且减少了环境污染。
其他陶瓷材料
陶瓷材料种类繁多,各有特色,可制成各种功能元件。氧化锂陶瓷为高温材料,滑石陶瓷为高频绝缘材料,氧化钍陶瓷为介电材料,钛酸钡陶瓷为光电材料,硼化物、氮化物、硅化物等金属陶瓷为超高温材料。铁氧体陶瓷为永久磁铁、记忆磁铁、磁头等材料,稀土钴瓷为存贮器材料,半导体瓷为亚敏元件、太阳电池等材料
纳米陶瓷的全部构造都在纳米级以下,因此它与传统的陶瓷可以说是两种截然不同的陶瓷。纳米陶瓷有着强度高、硬度高、柔韧性强的特点,如今已经被广泛应用到许多领域之中。一起来了解一下吧。
刀具
传统的刀具使用的是钢铁材料制成,在使用的过程中难免会发生卷刃的现象,而使用纳米陶瓷制成的刀具则不会有这种问题。因为使用了纳米陶瓷的缘故,这种纳米陶瓷刀具,有着比钢铁刀具更为强劲的硬度,即使是用铁锤大力敲打,也不会产生丝毫的变形。如今应用了纳米陶瓷的刀具已经进入了我们的生活中,几乎是一切要用到刀具的领域都迎来了技术革命。像手术刀、切刀、砍刀、野战刀、螺丝刀等领域都已经出现了纳米陶瓷刀具。
航天飞机外壳
众所周知,地球有着大气层,保护着人类免受阳光的直接照射,也承担着大气循环的作用。从太空进入地球的物体在进入大气层时,都会与空气产生剧烈的摩擦,一些“不怀好意”的陨石就会在这种剧烈高温的摩擦下消失殆尽。这是地球的保护机制,然而可以反复使用的航天飞机却不会被燃烧殆尽,因为它的外壳上使用了一层隔热瓷瓦。这同样是采用了纳米陶瓷技术的产物,纳米陶瓷有着坚固且耐高温的特性,能够保护航天飞机免受与空气摩擦而产生的剧烈高温的侵蚀。
发动机
柴油发动机和燃气轮机是如今发动机行业中的两大巨头,但是它们在二十一世纪的今天,仍然有着不能解决的缺陷,例如热效率低、结构复杂、复杂环境下使用效果等。纳米陶瓷技术的产生,可以有效的解决这些问题。如今一些发动机上已经开始采用纳米陶瓷涂层技术,这种技术成本低廉,效果出众,可以有效的延长发动机的使用寿命,并且可以让发动机在及其复杂的环境下工作。纳米陶瓷技术在发动机领域,特别是战斗机使用的特殊发动机领域必将发挥更加重要的作用。
经过特殊处理的韧性陶瓷,还有强度大、硬度高、不怕化学腐蚀等优点。如果用它来做菜刀、剪刀、锯、斧头等日用工具,其坚硬程度可与钢铁制品相媲美,而且不会生锈,更适合切生吃食物和熟食。另外,韧性陶瓷还可以用于制造防弹盔甲、人造骨骼、人造关节和手表外壳等。
日本、美国、德国等一些发达国家还采用韧性陶瓷替代金属材料来制造发动机,这种发动机体积小、重量轻、热效率高,用同样的燃料可以使汽车多跑30%的路程,是一种高效的节能发动机。