陶瓷的烧制过程中为什么会出现缺陷?
(一) 变形:产品烧成变形是陶瓷行业最常见、最严重的缺陷,如口径歪扭不圆,几何形状有不规则的改变等。主要原因是装窑方法不当。如匣钵柱行不正,匣钵底或垫片不平,使窑车运行发生震动,影响到产品的变形。另外,产品在烧成中坯体预热与升温快时,温差大易发生变形。烧成温度过高或保温时间太长也会造成大量的变形缺陷。使用的匣钵高温强度差、或涂料抹不平时也会造成烧成品的变形。\r\n(二) 开裂:开裂指制品上有大小不同的裂纹。其原因是坯体入窑水分太高(大于2%以上),预热升温和冷却太快,导致制品内外收缩不匀。有的是坯体在装钵前已受到碰撞有内伤。坯体厚薄不匀,配件(如壶把、咀等)重量过大或粘结不良也会造成制品开裂。防止的办法是:(1)入窑坯体水分小于2%,车速适当减少冷却量。(2)装窑时套装操作谨慎,垫片与坯体配方一致。配件大小、重量与粘接位置恰当。有的在粘接泥浆中加入10-15%的釉料,可以使咀、把与主体牢固熔接一体,如此可克服开裂缺陷。\r\n(三) 起泡:烧制品起泡有坯泡与釉泡两种。坯泡分为氧化泡与还原泡两种。氧化泡指坯泡外面覆盖釉层,断面呈灰黑色,多形成于窑内低温部位。主要是瓷胎与釉料中的分解物未能充分氧化,烧失物未完全排除所致。予热升温快,氧化分解阶段时间短、氧化结束时窑内温度过低,上下温度差过大。在坯釉料中,碳酸盐。硫酸盐及有机杂质含量较多等都是造成产品起泡的主因。此外时装车密度不当、入窑水份高等原因亦须注意。 还原泡又称过火泡,断而发黄,多发生于高温近喷火口处的制品。主要由于坯体内硫酸盐与高价铁还原不足,强还原气氛不足及烧成温度过高造成。釉泡系沉积炭及分解物在釉熔前未能烧尽挥发,气体被阻于釉面层中形成。若延长釉熔时间或适当平烧即可解决。\r\n(四)阴黄:制品表面发黄或斑状发黄,有的断面也有发黄现象,多出现在高火位处。主要原因是升温太快,釉熔融过早,还原气氛不足、而使瓷胎中的fe2o3未能还原成feo。此外,装钵柱太低,窑顶局部产品温度偏高而还原不足也会形成阴黄缺陷。在产品原料中tio2含量太高,也会导致产品发黄,如若在坯料中加入微量coo,可遮盖产品的黄色。\r\n(五) 烟熏:不论采用何种燃料都会发生烟熏现象。烟熏指产品表面呈灰色或不纯正的白色。主要由于坯体氧化不完全或还原过早使坯内炭素、有机物或低温碳未能烧尽在釉层封闭之前。有时烟气倒流也会熏蚀釉面。若釉料中钙含量偏高也易形成烟熏缺陷。\r\n(六) 针孔:指产品釉面出现微小凹痕或小孔。形成此类缺陷一是坯料中有机物。碳素、氧化铁含量较高,当升温快时烧失物未能完全烧尽挥发而到后期高温阶段才逸出釉面,形成宛如微观火山状的针孔。此外,高温炉还原气氛太弱,喷火口部位产品再次被氧化也会造成针孔。再者,当釉料流动性差或施釉过薄时也会发生针孔缺陷。\r\n(七) 桔釉:制品釉面不平、呈桔皮状。一般发生于盘、碟类或瓷板砖类制品。主要原因是釉面波化时升温过快,烧成温度过高使釉面产生沸腾现象所致。另外釉浆厚薄不均、高温流动性差及釉料研磨不细等都是形成桔釉缺陷的症结所在。\r\n(八) 惊釉:产品釉面有发丝粗的裂纹。主要原因是坯、釉膨胀系数相差较大形成。这就需要重新调整坯。釉配料配方。此外烧成温度过高、冷却制度不合理或釉层过厚也会形成惊釉缺陷。\r\n(九) 生烧与过烧:生烧的制品外观发黄、吸水率偏高、釉面光泽差而粗糙、强度低、敲打时声音浑浊。过烧时产品发生变形,釉面起泡或流釉。主要原因在烧成温度偏高或偏低,高温保温时间控制不当,装车密度不合理或烧成温差大等产生局部过烧或生烧。\r\n(十) 无光:亦称消艳。产生釉面无光的原因是釉面形成微细体和釉层熔融不良,因此形成釉面无光缺陷。可在冷却初期采取快速冷却,防止釉面层析晶。提高釉面光泽度。
瓷砖出现针眼是怎么回事呢?正常情况下,瓷砖是光滑完整的,不会出现层次感不行的外观,如果是有针眼,那就代表瓷砖质量不太好,应该是你买的瓷砖质量太差。那么,瓷砖上有针眼有什么影响?让我们一起来看看吧!
瓷砖出现针眼属于质量问题吗
玻化砖是抛光砖其中的一种,因为表面特别光滑,吸水率很低(低于0.5%)而出名,因为瓷砖在烧结过程中会出现气孔等现象,抛光后有时会看到有小孔这种不良现象。
瓷砖表面出现成串小坑一般有一下几种情况,关键是要看实物表面才能判定。
1.瓷砖原料里面有水汽, 2. 压机吨位不够,砖坯密度不够,内部有空气。 3. 除杂质不尽,高温下融化甚至气化,形成孔洞
瓷砖上有针眼有什么影响
瓷砖上面会有黑点和针孔,应是瓷砖在煅烧过程中出现的质量问题。针孔,一般对瓷砖的影响很大,它是由于细小气泡从釉底层跑出来导致的,有针孔不仅影响美观,而且影响其力学性能和抗水性。
根据陶瓷砖国家标准GB/T 4100-2006中规定:各种陶瓷砖的表面质量规定是“至少95%的砖其主要区域无明显缺陷”,如果砖面的黑点及针孔数量多的话,这个是不符合国家陶瓷砖产品质量标准要求的。需及时找销售商更换。
瓷砖有针眼怎么去除
1、你买的不是品牌砖吧,质量过关,瓷砖密度应该不够,被上面的釉面遮挡,时间一长,釉面掉了,小坑就出现了。
2、有针眼哪是瓷砖没有烧好,不算是质量问题,不过也必要返工,不然的话工程量太大咯,针眼不是很打的话,也是没有关系的。
3、有针眼!太多的话可以找商家麻烦哈!不明显的,加水填上!等干了后再用滑石粉加细砂纸砂平就好?大品牌的优级砖不可能有这种情况的!自己找商家给点同色的填缝剂!可能是厂家分等级的时候马虎了!少就算了
所谓新颖陶瓷,必须克服普通陶瓷脆性这一缺点。经过许多科学家的不懈努力,现在人们终于找到了克服陶瓷脆性的药方。
首先,从改善内部结构着手。研究表明,在氧化锆陶瓷的原料中,添加少量的氧化钇、氧化镁、氧化钙等粉未,经高温烧制成氧化锆陶瓷后,其中的氧化锆便生成两种晶体,它们叫立方晶体和四方晶体。当陶瓷受到外力作用时,四方晶体便变成一种单斜晶体,体积迅速“膨胀”。由于晶体的体积急速增大,进而可阻止陶瓷中原先存在的细微裂纹的扩展。这样,陶瓷就不会破裂了。
其次,可在改善陶瓷的表面状态方面下功夫。一般说来,陶瓷的断裂大都从表面的缺陷开始,因此,改善陶瓷的表面状态,犹如为防止陶瓷的破损设下了第一道屏障。具体方法为:通过化学或机械抛光技术消除陶瓷的表面缺陷;对氮化硅、碳化硅等非氧化物,只要通过控制表面氧化技术,便可消除表面缺陷或者使裂纹尖端变钝;通过热处理也可达到表面强化和增韧的目的。
第三,将纤维均匀地分布于陶瓷原料之中,以提高陶瓷的强度和韧性。其原理与我们在石灰中加入纸筋相类似。这是因为,将纤维加入陶瓷原料之中,具有三大作用:①纤维不易拉断,在工作时可承担大部分外加负荷,从而减轻了陶瓷的负担,进而使裂纹不易产生;②纤维与陶瓷体结合在一起以后、具有很大的摩擦力,于是,陶瓷的韧性可大大提高;③即使陶瓷内出现了细微裂纹,纤维也能将它们紧紧拉住,不至于进一步扩展开来。
新颖陶瓷可以制作成陶瓷榔头、陶瓷菜刀、陶瓷剪刀等工业产品和生活用具。从外观上看,这些陶瓷制品与普通的钢铁制品并没有什么不同,只是毫无钢铁的成分。
554为什么“新颖陶瓷”又称“韧性陶瓷”?
韧性陶瓷除了不怕撞击不怕摔打的优点以外,还具有强度大、硬度高、不怕化学腐蚀等优点。它除了可以制作榔头和刀剪以外,还可以制造开瓶器、螺丝刀、斧头、锯子等器具。
至于说到这些新产品的长处,那是显而易见的:用陶瓷菜刀切食物,不会在食物上留下令人讨厌的铁腥味,它特别适合于切生吃的食物和熟食;陶瓷剪刀的锋利程度不亚于钢制剪刀,可以用来裁剪纸张、绸布等。由于它不会带磁性,因此特别适宜于剪接录音磁带和录像磁带。
韧性陶瓷还可以用来制做手表壳,制造加工金属用的切削工具、防弹盔甲、人造骨骼和关节呢。不过,材料科学家对韧性陶瓷最感兴趣的是利用它代替金属材料制造发动机。
【陶瓷产品的清洗与保养方法】
1、一般产品可以减少清洁剂的使用。水箱内请不要使用清洁剂。 因为含氯的清洁剂会对水箱内的配件装置等带来危害加速老化,从而导致堵塞和冲洗不良;
2、应使用中性的清洁剂清洗陶瓷釉面。使用烈性或磨蚀性的清洁剂,会损伤陶瓷的釉面,釉面一旦被破坏,就容易出现粘附脏污,吸水,变形,变色等问题;
3、请勿使用尼龙刷或者百洁布之类用品清洗陶瓷釉面,因为会给陶瓷表面造成磨损;
4、应避免硬物直接撞击产品的表面。不要往陶瓷产品内倾倒烈性和腐蚀性液体,以免破坏釉面。这些情况若不加以注意,由此引起的问题均属于人为损坏,是不列入售后质量问题的。
2陶瓷干燥过程机理
2.1坯体中的水分
陶瓷坯体的含水率一般在5%-25%之间,坯体与水分的结合形式,物料在干燥过程中的变化以及影响干燥速率的因素是分析和改进干燥器的理论依据。当坯体与一定温度及湿度的静止空气相接触,势必释放出或吸收水分,使坯体含水率达到某一平衡数值。只要空气的状态不变,坯体中所达到的含水率就不再因接触时间增加而发生变化,此值就是坯体在该空气状态下的平衡水分。而到达平衡水分的湿坯体失去的水分为自由水分。也就是说,坯体水分是平衡水分和自由水分组成,在一定的空气状态下,干燥的极限就是使坯体达到平衡水分。
坯体内含有的水分可以分为物理水与化学水,干燥过程只涉及物理水,物理水又分为结合水与非结合水。非结合水存在于坯体的大毛细管内,与坯体结合松弛。坯体中非结合水的蒸发就像自由液面上水的蒸发一样,坯体表面水蒸汽的分压力,等于其表面温度下的饱和水蒸汽分压力。坯体中非结合水排出时。物料的颗粒彼此靠拢,因此发生体积收缩,故非结合水又称为收缩水。结合水是存在于坯体微毛细管(直径小于o.1μm)内及胶体颗粒表面的水,与坯体结合比较牢固(属物理化学作用),因此当结合水排出时,坯体表面水蒸汽的分压将小于坯体表面温度下的饱和水蒸汽分压力。在干燥过程中当坯体表面水蒸汽分压力等于周围干燥介质的水蒸汽分压力时,干燥过程即停止,水分不能继续排出,此时坯体中所含的水分即为平衡水,平衡水是结合水的一部分,它的多少取决于干燥介质的温度和相对湿度。在排出结合水时,坯体体积不发生收缩,比较安全。
2.2坯体的干燥过程
以对流干燥过程为例,坯体的干燥过程可以分为:传热过程、外扩散过程、内扩散过程三个同时进行又相互联系的过程。
传热过程,干燥介质的热量以对流方式传给坯体表面,又以传导方式从表面传向坯体内部的过程。坯体表面的水分得到热量而汽化,由液态变为气态。
外扩散过程:坯体表面产生的水蒸汽,通过层流底层,在浓度差的作用下,以扩散方式,由坯体表面向干燥介质中移动。
内扩散过程:由于湿坯体表面水分蒸发。使其内部产生湿度梯度,促使水分由浓度高的内层向浓度较低的外层扩散,称湿传导或湿扩散。
在干燥条件稳定的情况下,坯体表面温度、水分含量、干燥速率与时间有一定的关系,根据它们之间关系的变化特征,可以将干燥过程分为:加热阶段、等速干燥阶段、降速干燥阶段三个过程。
加热阶段,由于干燥介质在单位时间内传给坯体表面的热量大于表面水分蒸发所消耗的热量,因此受热表面温度逐渐升高,直至等于干燥介质的湿球温度,此时表面获得热与蒸发消耗热达到动态平衡,温度不变。此阶段坯体水分减少,干燥速率增加。
等速干燥阶段,本阶段仍继续进行非结合水排出。由于坯体含水分较高,表面蒸发了多少水量,内部就能补充多少水量,即坯体内部水分移动速度(内扩散速度)等于表面水分蒸发速度,亦等于外扩散速度,所以表面维持潮湿状态。另外,介质传给坯体表面的热量等干水分汽化所需的热量,所以坯体表面温度不变,等于介质的湿球温度。坯体表面的水蒸汽分压等子表面温度下饱和水蒸汽分压,干燥速率稳定,故称等速干燥阶段。本阶段是排出非结合水,故坯体会产生体积收缩,收缩量与水分降低量成直线关系,若操作不当,干燥过快,坯体极容易变形,开裂,造成干燥废品。等速干燥阶段结束时,物料水分降低到临界值。此时尽管物料内部仍是非结合水,但在表面一层内开始出现结合水。
降速干燥阶段,这一阶段中,坯体含水量减少,内扩散速度赶不上表面水分蒸发速度和外扩散速度,表面不再维持潮湿,干燥速率逐渐降低。由于表面水分蒸发所需热量减少,物料温度开始逐渐升高。物料表面水蒸汽分压小于表面温度下饱和水蒸汽分压。此阶段是排出结合水,坯体不产生体积收缩,不会产生干燥废品。当物料排水分下降等于平衡水分时,干燥速率变为零,干燥过程终止,即使延长干燥时间,物料水分也不再发生变化。此时物料表面温度等于介质的干球温度,表面水蒸汽分压等于介质的水蒸汽分压。降速干燥阶段的干燥速度,取决于内扩散速率,故又称内扩散控制阶段,此时物料的结构、形状、尺寸等因素影响着干燥速率。
2.3影响干燥速率的因素
影响干燥速率的因素有,传热速率、外扩散速率、内扩散速率。
(一)加快传热速率
为加快传热速率,应做到:①提高干燥介质温度,如提高干燥窑中的热气体温度,增加热风炉等,但不能使坯体表面温度升高太快,避免开裂,②增加传热面积:如改单面干燥为双面干燥,分层码坯或减少码坯层数,增加于与热气体接触面,③提高对流传热系数。
(二)提高外扩散速率当干燥处于等速干燥阶段时,外扩散阻力成为左右整个干燥速率的主要矛盾,因此降低外扩散阻力,提高外扩散速率,对缩短整个干燥周期影响最大。外扩散阻力主要发生在边界层里,因此应做到:①增大介质流速,减薄边界层厚度等,提高对流传热系数。也可提高对流传质系数,利于提高干燥速度,②降低介质的水蒸汽浓度,增加传质面积,亦可提高干燥速度。
(三)提高水分的内扩散速率
水分的内扩散速率是由湿扩散和热扩散共同作用的。湿扩散是物料中由于湿度梯度引起的水分移动,热扩散是物理中存在温度梯度而引起的水分移动。要提高内扩散速率应做到:①使热扩散与湿扩散方向一致,即设法使物料中心温度高于表面温度,如远红外加热、微波加热方式,②当热扩散与湿扩散方向一致时,强化传热,提高物料中的温度梯度,当两者相反时,加强温度梯度虽然扩大了热扩散的阻力,但可以增强传热,物料温度提高,湿扩散得以增加,故能加快干燥,③减薄坯体厚度,变单面干燥为双面干燥,④降低介质的总压力,有利子提高湿扩散系数,从而提高湿扩散速率,⑤其他坯体性质和形状等方面的因素。
3干燥技术分类
按干燥制度是否进行控制可分为,自然干燥和人工干燥,由于人工干燥是人为控制干燥过程,所以又称为强制干燥。
按干燥方法不同进行分类,可分为:
①对流干燥,其特点是利用气体作为干燥介质,以一定的速度吹拂坯体表面,使坯体得以干燥。
②辐射干燥,其特点是利用红外线、微波等电磁波的辐射能,照射被干燥的坯体使其得以干燥。
③真空干燥,这是一种在真空(负压)下干燥坯体的方法。坯体不需要升温,但需利用抽气设备产生一定的负压,因此系统需要密闭,难以连续生产。
④联合干燥,其特点是综合利用两种以上干燥方法发挥它们各自的特长,优势互补,往往可以得到更理想的干燥效果。
还有一些干燥方法,按干燥制度是否连续分为间歇式干燥器和连续式干燥器。连续式干燥器又可按干燥介质与坯体的运动方向不同分为顺流、逆流和混流:按干燥器的外形不同分为室式干燥器、隧道式干燥器等。
4 各瓷种所用干燥器特点
4.1 建筑卫生陶瓷干燥器
1恒温恒湿大空间干燥卫生洁具的坯体在微压之后水分为18%左右,此时强度低,不宜搬动,一般采取就地干燥的方法。一般厂家采用锅炉蒸汽加热的方法系统,它的特点是燃料成本低,可以形成一定的干燥气氛。同时缺点很多,如无横向空气流动;排湿功能差,干燥时间长;无通风系统,工人工作条件差。因此比较先进的“恒温恒湿系统”被采用。这种系统不需要改变原来的生产流程、生产工艺,还可以加速干燥速度,它的另一大特点是具有强制通风功能。这一系统也存在一系列的问题,如能源消耗大;参数滞后;干燥不同步等。尤其是近年来石膏模有变大趋势,那么坯体的干燥时间和要求就不一样,为了保证每一班的生产安排。石膏模的干燥成为生产安排的主要矛盾。在解决这一问题上采用密封式干燥系统,即石膏摸出坯后整个成型线密封,在这个小的空间内使用小型的恒温恒湿系统。
2热风快速干燥
快速干燥就是干燥气氛按坯体的不同及坯体干燥程度而变化,时刻保持最佳干燥气氛,提高干燥速度。温湿度自动调节快速干燥室具有以下几个特点,①空间小,参数调整时响应快,精确度高;②可以根据坯体的情况,设定不同的干燥曲线;③工控机控制,自动化程度高,减少人为失误的因素,坯体干燥合格率高。这一系统由房体结构、热风炉、布风系统、搅拌系统、控制系统、湿度系统等六部分组成。
3蒸汽快速干燥
这里讨论的是蒸汽直接干燥,就是坯体出模后,沿轨道进入末端封闭的干燥室中,关闭干燥室后将蒸汽沿顶部的管道直接进入密封干燥室中,蒸汽在密室中膨胀降压,湿蒸汽由密室底部的管道排出回收。它的最大的优点是干燥快,正品率高。
4工频电干燥
就是将工频电(50Hz)通过坯体,由于坯体的电阻作用使得整个坯体均匀升温干燥,使达到了既升温又无温度梯度的目的。工频电干燥的缺点是干燥前的准备工作很麻烦,而且它只适合单件产品干燥。
4.2墙地砖干燥
墙地砖的坯体从压机出来后一般都是由窑炉的余热来进行干燥,但随着产品的规格尺寸越来越大,最大达1.2×2mm,甚至更大,厚度越来越厚,从8mm增大到60mm,靠窑炉的余热已经不能满足干燥的要求。而且随着产品的高档化、色彩多样化,对窑内的气氛的控制要求越来越精确和严格,用余热来干燥坯体时,干燥段的调整会引起窑内气氛的变化,甚至增加窑炉烧成燃料的消耗,有的增加1-2吨燃料。于是便出现了立式干燥器、干燥窑、多层干燥窑等。
1立式干燥窑
它是应用比较广泛的干燥设备,它占地面积小,干操小规格的墙地砖,具有较好的效果。
2干燥窑
干燥窑是直接加在烧成窑之前,外观上是窑炉的一部分(称为预热带)或是在窑的旁边独立建造一条长宽相当的干燥窑。坯体从压机出来或施釉后出来直接进入干燥窑干燥,干燥完坯体直接进入预热带或经传动进入烧成密进行烧成。它由热风炉、布风系统、窑体结构三个部分组成,干燥窑热利用率好的一般只采用烧成窑的热风基本上能满足干燥要求,有的差一点或要求干燥水分低一点的,除了用烧成密的热风外,还需要另外烧热风炉,每天消耗燃料2~3吨。
3多层干燥窑
随着技术的进步,坯体中含水率越来越低,干燥过程需将含水率从8%降低到1%,使用一般干燥窑不能达到这个目标。多层干燥窑就能解决这个问题。它是由窑头排队器,窑尾收集器及若干干燥单元组成,每个单元都是独立的,它们的温度、湿度调节,通风量调节,单独由热风炉。它的优点是:足够的干燥时间;外表面积小,散热损失小;出风口贴近砖面。干燥强度高;调节温度时通风量不会受到影响,因此热风吹过砖坯表面的速度及范围都不会因温度的调整而变动,但是多层干燥窑的调控相对比较困难,特别是窑宽增加,无法保证窑内温度的均匀,引起干燥效果不一。
4.3日用陶瓷干燥
日用陶瓷干燥与卫生陶瓷或墙地砖坯体的干燥不同,其具有的特点是:①坯体的种类繁多、数量大、尺寸小、形状复杂。变形和开裂是最常见的两种缺陷:②生产工艺过程中常常要拌入脱模、翻坯、修坯、接把、上釉等工序而成为流水作业完成。因此日用瓷的干燥主要使用链式干燥器。根据链条的布置方式可分为:水平多层布置干燥器、水平单层布置干燥器、垂直(立式)布置干燥器。
5远红外干燥技术
红外辐射干燥技术越来越受到各行各业人们的重视,在食品干燥、烟草、木材、中草药、纸板、汽车、自行车、金属体烤漆等方面发挥很大作用。此外,远红外干燥也被应用于陶瓷干燥中。大部分物体吸收红外线的波长范围都在远红外区,水和陶瓷坯体在远红外区也有强的吸收峰,能够强烈地吸收远红外线,产主激烈的共振现象,使坯体迅速变热而使之干燥。且远红外对被照物体的穿透深度比近、中红外深。因此采用远红外干燥陶瓷更合理。远红外干燥比一般的热风、电热等加热方法具有高效快干、节约能源、节省时间、使用方便、干燥均匀、占地面积小等优点,从而达到了高产、优质、低消耗的优良效果。
据陶瓷厂生产实践证明,采用远红外干燥比近红外线干燥时间可缩短一半,是热风干燥的1/10,成坯率达90%以上,比近红外干燥节电20~60%[1]。郑州瓷厂对10寸平盘进行远红外干燥技术实施,结果证明,生产周期提高一倍,通常干燥时间为2.5~3小时,缩短为1小时,成本低、投资小、见效快、卫生条件好、占地面积小。远红外材料的研究近年来很活跃,而且取得了很大进展,在各行各业也有很多成功应用的例子,为什么在建筑卫生陶瓷的干燥线上却少有人问津呢?
6微波干燥技术
微波是指介于高频与远红外线之间的电磁波,波长为O.001—1m,频率为300-300000MHz。微波干燥是用微波照射湿坯体,电磁场方向和大小随时间作周期性变化使坯体内极性水分子随着交变的高频电场变化,使分子产生剧烈的转动,发生摩擦转化为热能,达到坯体整体均匀升温、干燥的目的[2、3、4]。微波的穿透能力比远红外线大得多,而且频率越小,微波的半功率深度越大。微波干燥的特点:
(1)均匀快速,这是微波干燥的主要特点。由于微波具有较大的穿透能力,加热时可使介质内部直接产生热量。不管坯体的形状如何复杂,加热也是均匀快速的,这使得坯体脱水快,脱模均匀,变形小,不易产生裂纹。
(2)具有选择性,微波加热与物质的本身性质有关、在一定频率的微波场中,水由于其介质损耗比其它物料大,故水分比其它干物料的吸热量大得多;同时由于微波加热是表里同时进行,内部水份可以很快地被加热并直接蒸发出来,这样陶瓷坯体可以在很短的时间内经加热而脱模。
(3)热效率高、反应灵敏,由于热量直接来自于干燥物料内部,热量在周围介质中的损耗极少,加上微波加热腔本身不吸热,不吸收微波,全部发射作用于坯体,热效率高。
微波加热设备主要由直流电源、微波管、连接波导、加热器及冷却系统等几个部分组成微波加热器按照加热物和微波场作用的形式可分为驻波场谐振加热器、行波场波导加热器、辐射型加热器、慢波型加热器等几大类。
6.1微波干燥在日用陶瓷中应用
湖南国光瓷业集团股份有限公司,根据日用陶瓷的工艺特点,设计了一条日用陶瓷快速脱水干燥线用于生产中,实践证明,与传统链式干燥线相比,成坯率提高10%以上,脱石膏模时间从35~45分钟缩短到5~8分钟,使用模具数量由400~500件下降致100~120件,微波干燥线所占地面积小,生产无污染.其效率式链式干燥的6.5倍,除了可大量节约石膏模具外,与二次快速干燥线配合使用,对于10.5寸平盘总干燥成本可下降350元/万件[5]。
6.2微波干燥在电瓷中的应用
辽宁抚顺石油化工公司,李春原对电瓷干燥工艺采用微波加热干燥技术、重量鉴读控制技术、红外测温鉴读控制技术,对复杂形状的电瓷进行干燥,与常规蒸汽干燥方法相比较,可提高生产率24~30倍,提高成品率15%~35%,相同产量占地面积仅是现有工艺的二十分之一左右,可大幅度地提高经济效益。这对建筑卫生陶瓷、墙地砖等一些异型产品的干燥可提供借鉴。
6.3多孔陶瓷的干燥多孔陶瓷由于具有机械强度高、易于再生、化学稳定性好、耐热性好、孔道分布均匀等优点,具有广阔的应用前景,并被广泛应用于化工。环保、能源、冶金、电子、石油、冶炼、纺织、制药、食品机械、水泥等领域。作为吸声材料敏感元件和人工骨、齿根等材料也越来越受到人们的重视。由于多孔材料成型时含水分较多,孔隙多,且坯体内孔壁特别薄,用传统的方法因加热不均匀,极难干燥,加之这些多孔材料导热系数差,其干燥过程要求特别严格,特别是用于环保汽车等方面的蜂窝陶瓷,干燥过程控制不好,易变形,影响孔隙率及比表面积。微波干燥技术已成功地应用于多孔陶瓷的干燥,其能很容易地把坯体的水分从18%~25%降低到3%一下,降水率达到0.7~1.5kg,大大缩短干燥时间、提高成品率。我们亦把微波干燥应用于劈开砖的温坯干燥,效果亦非常明显。
7展望
微波加热虽然有许多优点,但其固定投资和纯生产费用较其它加热方法为高,特别是耗电较多,使生产成本增加;微波在大能量长时间的照射下,对人体健康带来不利影响,微波加热是有选择性的。因此单独采用微波干燥或对流干燥都有它们的优劣之处。如果综合两者将会使两种方法的优点得到充分的发挥。即在快速干燥室内,增加微波发生器。在坯体的升温阶段,微波发生器以最大功率运行,在很短的时间内使坯体温度升高。然后逐渐减少微波功率,而热风干燥以最大强度运行,这样总的加热时间将减少50%,总能耗并没有增加,而且坯体合格率高。而且,我们应该尽可能使微波炉结构设什合理,防辐射措施得当,可使微波辐射减至最小,对人体完全没有影响[6]。所以为了更好地发挥微波技术的优点,除了采用混和加热或混合干燥技术外,加强完善陶瓷材料与微波之间的作用机理的研究,加强陶瓷材料的介电性能、介质消耗与微波频率及温度关系的基础数据试验,及完善微波干燥的工艺及设备,使这一技术委陶瓷行业服务。
用无损检测的方法除表面浸透检测(荧光法、着色法)外,主要有X射线层析成像、红外热成像、超声A扫描及C扫描、声发射微焦点X射线、超声显微镜等。近年来,这些方法已在自动化技术、探测器技术信息处理和资料存储等方面取得了很大的进展,特别是用于航天航空领域的陶瓷基复合材料构件的制造屮发挥着极为重要的作用。
X射线层析成像法(X-CT)
所谓X-CT是利用X射线透过数据对物体外部获取的某种物理量的测试值,去重建物体内某一特定断面上的某种物理量的无重叠二维图像用依次相继获取的一系列断面图可构成三维内部立体图像。X-Cr的特点是4:(1)高的空间分辨率和密度分辨率(通常<0.5%):(2)高检测范围(1
J0:从空气到金属材料)(3)成像的尺寸精度高,可实现直观的三维图像(4)在有足够的穿透能量下,可不受试件几何结构的限制等。局限性表现为:检测效率低检测成本高、双侧透射成像(相对于反射式CT),不适于平板薄件的检测以及大型构件的现场检测。基于它的特点,其用途主要归结为以下几个方面(1)非微观缺陷的检测(裂纹夹杂、气孔、分层等缺陷检测)(2)密度分布的测量(材料均匀性、复合材料微气孔含量的测量)3)内部结构尺寸的精确测量(4)装配结构和多余物检测(5)三维成像与CAD/CAM等制造技术结合而形成的所谓反馈工程(RE)。
主要牵涉到烧造瓷器时所用的燃料的问题,用煤烧的瓷器器物表面就会白中发黄,原因是煤中含有硫,在氧气的作用下发生了化学反应。
还有就是瓷器的色泽与胎或釉中所含矿物质成分密切有关,相同矿物质成分因其含量的高低,也可变化出不同的色泽。
另外也和瓷器的胎子淘洗不干净,以及烧造工艺温度等有关系,最重要的还是窑口当地的泥土特征。
陶瓷餐具级别一般划分为:
1级、整个产品没有任何缺陷,变形或色差,允许在不显眼处有一个针孔。
2级、可以有2-3个针孔,不明显色差,轻微变形。
3级、色差明显轻度变形允许1-2处1平方MM左右的缩釉。