建材秒知道
登录
建材号 > 陶瓷砖 > 正文

陶瓷材料的增韧方法都有哪些

酷炫的板栗
怕孤单的保温杯
2022-12-31 22:45:31

陶瓷材料的增韧方法都有哪些

最佳答案
直率的短靴
兴奋的短靴
2025-08-03 08:39:49

这是因为组成陶瓷材料的化合物往往是离子键和共价键的键性,这些化学键的原子不像金属键键合的原子那样排列紧密,而是有许多空隙,难以引起位错移动。从陶瓷的显微结构来说,其多晶体的晶界也会阻碍位移的通过,聚集的位移应力会导致裂纹的形成,并在超过一定的临界值后突然扩展。另外,组成陶瓷材料的晶体和玻璃相也多是脆性的。<br />

增韧的方法一般有表面补强(例陶瓷表面的施釉、表面离子交换)、复合增韧(例金属与陶瓷的复合、纤维与陶瓷的复合)和相变增韧(如ZrO2的增韧作用)。

最新回答
炙热的汉堡
拼搏的豆芽
2025-08-03 08:39:49

其实很多人并不了解氧化锆陶瓷所具备哪些增韧的方法实际上主要的增韧方法可以分为三种,下面就和明睿氧化锆陶瓷厂家一起来学习下吧!

拔出的机理,这种方式主要是在机体的裂纹中进行扩展的,主要会让基体与晶粒之间都可以得到解离,等应力出现加剧的时候,较为弱些的晶粒其实就会出现断裂,最后才会将其整个的从基体中拔出,但是在整个拔出的过程中,肯定会造成能力出现损耗,所以就会对氧化锆陶瓷起到增韧的最后效果。

裂纹的偏转,当整个裂纹在不断扩展的过程中,会出现较多的长柱形颗粒,一旦碰触到的话,那么其裂纹就会出现折弯,都是随着较弱的颗粒而出现的,但是裂纹会因为垂直度的不同而出现偏离,所以裂纹在路径上也会随之变长,自然会造成能量的消耗,同样达到氧化锆陶瓷增韧的目的。

桥接的机理,当机体内部出现裂纹的时候,实际上晶体已经受到了外在的载荷,类似于我们所说的桥梁的结构,但是晶体则是主要由生产力得出的,但是这个力则会在载荷损耗之前消失,所以基本所有的裂纹都会出现闭合的现象,不仅仅是提高了增韧的效果,还将强度得到了有效的提升。

魁梧的钻石
踏实的棒棒糖
2025-08-03 08:39:49
1.11.2 陶瓷材料的强化

影响陶瓷材料强度的因素是多方面的,材料强度的本质是内部质点(原子、离子、分子)间的结合力,为了使材料实际强度提高到理论强度的数值,长期以来进行了大量研究。从对材料的形变及断裂的分析可知,在晶体结构既定的情况下,控制强度的主要因素有三个,即弹性模量E,断裂功(断裂表面能) 和裂纹尺寸 。其中E是非结构敏感的, 与微观结构有关,但对单相材料,微观结构对 的影响不大,唯一可以控制的是材料中的微裂纹,可以把微裂纹理解为各种缺陷的总和。所以强化措施大多从消除缺陷和阻止其发展着手。值得提出的有下列几个方面。

(1)微晶, 高密度与高纯度 为了消除缺陷,提高晶体的完整性,细、密、匀、纯是当前陶瓷发展的一个重要方面。近年来出现了许多微晶、高密度、高纯度陶瓷,例如用热压工艺制造的 陶瓷密度接近理论值,几乎没有气孔,特别值得提出的是各种纤维材料及晶须。表1-6列出一些纤维晶须的特性,从表中可以看出,将块体材料制成细纤维,强度大约提高一个数量级,而制成晶须则提高两个数量级,与理论强度的大小同数量级。晶须提高强度的主要原因之一就是大大提高了晶体的完整性,实验指出,晶须强度随晶须截面直径的增加而降低。

表1-6 几种陶瓷材料的块体、纤维及晶须的抗拉强度

材料

抗拉强度/MPa

块体

纤维

晶须

Al2O3

BeO

ZrO2

Si3N4

280

140(稳定化)

140(稳定化)

120~140(反应烧结)

2100

-

2100

21000

13333

-

14000

(2)预加应力 人为地预加应力,在材料表面造成一层压应力层,就可提高材料的抗张强度。脆性断裂通常是在张应力作用下,自表面开始,如果在表面造成一层残余压应力层,则在材料使用过程中表面受到拉伸破坏之前首先要克服表面上的残余压应力。通过一定加热、冷却制度在表面人为地引入残余压应力的过程叫做热韧化。这种技术已被广泛用于制造安全玻璃(钢化玻璃),如汽车飞机门窗,眼镜用玻璃。方法是将玻璃加热到转变温度以上但低于熔点,然后淬冷,这样,表面立即冷却变成刚性的,而内部仍处于软化状态,不存在应力。在以后继续冷却中,内部将比表面以更大速率收缩,此时是表面受压,内部受拉,结果在表面形成残留压应力。图1-54是热韧化玻璃板受横向弯曲时,残余应力,作用应力及合成应力分布的情形。这种热韧化技术近年来发展到用于其他结构陶瓷材料,淬冷不仅在表面造成压应力,而且还可使晶粒细化。利用表面层与内部的热膨胀系数不同,也可以达到预加应力的效果。

图1-54 热韧化玻璃板受横向变曲荷载时,残余应力、作用应力及合成应力分布

(3)化学强化 如果要求表面残余压应力更高,则热韧化的办法就难以做到,此时就要采用化学强化(离子交换)的办法。这种技术是通过改变表面的化学组成,使表面的摩尔体积比内部的大。由于表面体积胀大受到内部材料的限制,就产生一种两向状态的压应力。可以认为这种表面压力和体积变化的关系近似服从虎克定律,即:

(1-105)

如果体积变化为2%,E=70GPa,μ=0.25,则表面压应力高达930MPa。

通常是用一种大的离子置换小的,由于受扩散限制及受带电离子的影响,实践上,压力层的厚度被限制在数百微米范围内。在化学强化的玻璃板中,应力分布情况和热韧化玻璃不同,在热韧化玻璃中形状接近抛物线,且最大的表面压应力接近内部最大张应力的两倍,但在化学强化中,通常不是抛物线形,而是在内部存在一个接近平直的小的张应力区,到化学强化区突然变为压应力。表面压应力与内部张应力之比可达数百倍。如果内部张应力很小,则化学强化的玻璃可以切割和钻孔。但如果压应力层较薄而内部张应力较大,内部裂纹能自发扩展。破坏时可能裂成碎块。化学强化方法目前尚在发展中,相信会得到更广泛的应用。

此外,将表面抛光及化学处理用以消除表面缺陷也能提高强度。强化材料的一个重要发展是复合材料的出现。复合材料是近年来迅速发展的领域之一。

(4)陶瓷材料的增韧

所谓增韧就是提高陶瓷材料强度及改善陶瓷的脆性,是陶瓷材料要解决的重要问题。与金属材料相比,陶瓷材料有极高的强度,其弹性模量比金属大很多。但大多数陶瓷材料缺乏塑性变形能力和韧性,见表1-7,极限应变小于0.1%~0.2%,在外力的作用下呈现脆性,并且抗冲击、抗热冲击能力也很差.脆件断裂往往导致了材料被破坏。一般的陶瓷材料在室温下塑性为零,这是因为大多数陶瓷材料晶体结构复杂、滑移系统少,位错生成能高,而且位错的可动性差。

表1-7 金属与陶瓷材料的室温屈服应力与断裂韧性

材料

性能

屈服应力

断裂韧性KIC/Mpa.m1/2

碳钢

马氏体时效钢

高温合金

钛合金

陶瓷HP-Si3N4

235

1670

981

1040

490

210

93

77

47

5.5~3.5

高强度的陶瓷缺乏足够的韧性,例如,容易碎块断裂的高强度,热处理玻璃一旦出现缺陷,其对破裂传播的障碍极小,会迅速地导致断裂。表1-8中所列的为玻璃和一些单晶体陶瓷的结构韧性的数值。

表1-8室温下陶瓷和复合材料的断裂韧性

材料

KIC/Mpa.m1/2

材料

KIC/Mpa.m1/2

硅酸盐玻璃

单晶NaCl

单晶Si

单晶MgO

单晶SiC

热压烧结SiC

单晶Al2O3

(0001)

(1010)

(1012)

(1120)

0.7~0.9

0.3

0.6

1

1.5

4~6

4.5

3.1

2.4

2.4

Al2O3

Al2O3-Al复合材料

热压、气压烧结Si3N4

立主稳定结构ZrO2

四方氧化锆(Y-TZP, Ce-TZP)

Al2O3-ZrO2复合材料

单晶WC

金属(Ni,Co)化合WC

铝合金

铸铁

3.5~4

6~11

6~11

2.8

6~12

6.5~13

2

5~18

35~45

37~45

40~60

韧化的主要机理有应力诱导相变增韧,相变诱发微裂纹增韧,残余应力增韧等。几种增韧机理并不互相排斥,但在不同条件下有一种或几种机理起主要作用。

相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。例如,利用 的马氏体相变来改善陶瓷材料的力学性能,是目前引人注目的研究领域。研究了多种?的相变增韧,由四方相转变成单斜相,体积增大3% 5%,如部分稳定 ,四方 多晶陶瓷(TZP), 增韧 陶瓷(ZTA), 增韧莫来石陶瓷(ZTM), 增韧尖晶石陶瓷, 增韧钛酸铝陶瓷, 增韧 陶瓷,增韧 以及增韧 等。其中PSZ陶瓷较为成熟,TZP,ZTA,ZTM研究得也较多,PSZ,TZP,ZTA等的新裂韧性 已达 ,有的高达 ,但温度升高时,相变增韧失效。

当部分稳定 陶瓷烧结致密后,四方相 颗粒弥散分布于其他陶瓷基体中(包括 本身),冷却时亚稳四方相颗粒受到基体的抑制而处于压应力状态,这时基体沿颗粒连线方向也处于压应力状态。材料在外力作用下所产生的裂纹尖端附近由于应力集中的作用,存在张应力场,从而减轻了对四方相颗粒的束缚,在应力的诱发作用下会发生向单斜相的转变并发生体积膨胀,相变和体积膨胀的过程除消耗能量外,还将在主裂纹作用区产生压应力,二者均阻止裂纹的扩展,只有增加外力做功才能使裂纹继续扩展,于是材料强度和新裂韧性大幅度提高。

因此,这种微结构会产生三种不同的增韧机理。在氧化锆中具有亚稳态四方相的盘状沉淀的微粒,如图1-55所示。首先,随着裂纹发展导致的应力增加。会使四方结构的沉淀相通过马氏体相变转变为单斜结构,这一相变吸收了能量并导致体积膨胀产生张应力。这种微区的形变在裂纹附近尤为明显。其次,相变的粒子周围的应力场会吸收额外的能量,并形成许多微裂纹。这些微结构的变化有效地降低了裂纹尖端附近的有效应力强度。第三,由于沉淀颗粒对裂纹的阻滞作用和局域残余应力场的效应,会引起裂纹的偏转。裂纹偏转又引起裂纹的表面积和有效表面能增加,从而增加材料的韧性。上述的情况同样适甩于粒子和短纤维强化的复合材料中。

(a)(b)

(a)明亮的扁平椭圆形区域是立方结构的氧化铝基底中的四方结构氧化锆;

(b)形变区在临界裂纹的一个薄层内,明亮的部分是变形单余氧化锆

图1-55 相变增韧氧化锆

微裂纹增韧:部分稳定ZrO2陶瓷在烧结冷却过程中,存在较粗四方相向单斜相的转变,引起体积膨胀,在基体中产生弥散分布的裂纹或者主裂纹扩展过程中在其尖端过程区内形成的应力诱发相变导致的微裂纹,这些尺寸很小的微裂纹在主裂纹尖端扩展过程中会导致主裂纹分叉或改变方向,增加了主裂纹扩展过程中的有效表面能,此外裂纹尖端应力集中区内微裂纹本身的扩展也起着分散主裂纹尖端能量的作用,从而抑制了主裂纹的快速扩展,提高了材料的韧性。

表面残余压应力增韧:陶瓷材料可以通过引入残余压应力达到增强韧化的目的。控制含弥散四方 颗粒的陶瓷在表层发生四方相向单斜相相变,引起表面体积膨胀而获得表面残余压应力。由于陶瓷断裂往往起始于表面裂纹,表面残余压应力有利于阻止表面裂纹的扩展,从而起到了增强增韧的作用。

弥散增韧: 在基体中渗入具有一定颗粒尺寸的微细粉料,达到增韧的效果,这称为弥散增韧。这种细粉料可能是金属粉末,加入陶瓷基体以后,以其塑体变形,来吸收弹性应变能的释放量,从而增加了断裂表面能,改善了韧性。细粉末也可能是非金属颗粒,在与基体生料颗粒均匀混合之后,在烧结或热压时,多半存在于晶界相中,以其高弹性模量和高温强度增加了整体的断裂表面能,特别是高温断裂韧性。

当基体的第二相为弥散颗粒时,增髯机制可能是裂纹受阻或裂纹偏转、相变增韧和弥散增韧。影响第二相颗粒增韧效果的主要因素是基体与第二相颗粒大弹性模量和热膨胀系数之差以及两相之间的化学相容性。其中,化学相容性是要求既不出现过量的相间化学反应,同时又能保证较高的界面结合强度,这是颗粒产生有效增韧效果的前提条件。

当陶瓷基体中加入的颗粒具有高弹性模量时就会产生弥散增韧。其机制为:复合材料受拉伸时,高弹性模量第二相颗粒阻止基体横向收缩。为达到横向收缩协调,必需增大外加纵向拉伸压力,即消耗更多外界能量,从而起到增韧作用。颗粒弥散增韧与温度无关,因此可以作为高温增韧机制。纤维增强增韧复合材料,将在下节陈述。

在过去的20年中,人们在陶瓷材料的增韧方面做了大量的工作,通过对材料微结构的控制,成功的提高了断裂韧性和多晶、多相陶瓷的强度。到目前为止人们已经得到强度约1GPa,断裂韧性6~l0Mpa.m1/2的氮化硅;微粒稳定氧化锆和四方多晶氧化锆的断裂韧性和强度已可分别达到6~l0MPa.m1/2和0.6~lGPa;具有金属韧性的易延展陶瓷(金属的体积百分含量不超过30%)显示出更高的断裂韧性(10~15 MPa.m1/2)。而利用纤维增强的复合材料则因为其复合结构能在材料发生断裂前吸收大量的断裂功,有更加惊人的韧性,标准的屈服测量结果显示其断裂韧性可以达到20~25 MPa.m1/2。但值得注意的是复合材料的断裂过程与Griffith理论所描述的尖锐裂纹的传播过程是不同的。所有这些断裂韧性的进步使陶瓷材料增加了许多新的在结构方面的应用。例如,氮化硅在汽车部件(涡轮压缩机转子等)及高温汽轮机上的应用、形变增韧多晶氧化锆及其复合材料在大范围的低温条件下的应用,及纤维状或须状纤维增强的玻璃、玻璃状陶瓷和多晶陶瓷在发动机部件、切割工具、轴承等许多方面上的应用。

机智的白猫
文静的乐曲
2025-08-03 08:39:49
氧化铝陶瓷增韧方法有哪几种?

氧化铝陶瓷具有耐腐蚀、耐高温、耐磨损、质量轻、成本低等优点,是目前世界上生产量最大、应用面最广的工业陶瓷材料

氧化铝增韧陶瓷

在航天航空等斟防尖端技术领域和机械、冶金、化工等一般工业领域均有着广阔的应用前景,但其最致命的力学弱点便是其本身的脆性,这是由这类材料的结构特点所决定的。陶瓷材料中的化学键以共价键和离子键为主,这两类化学键都具有强的方向性和较高的结合强度,这就使得结构中难以发生显著的位错运动。因而限制了其实际应用范围的进一步推广。因此,陶瓷特别是氧化铝陶瓷的韧化变成了近年来结构陶瓷材料研究的核心课题。

氧化铝陶瓷的增韧方法:

一、氧化锆增韧

对氧化铝陶瓷的增韧是目前使用最多的增韧方法是纳米氧化增韧。当氧化铝中加入纯Zr02,粒子形成ZrO2增韧氧化铝陶瓷时,当添加含量适当时,可使韧性显著提高。其韧化效果主要来源于以下机理:1.使氧化铝晶粒基体细化。2. 氧化锆相变韧化。3.显微裂纹韧化。4. 裂纹转向与分叉。

使用高纯氧化铝陶瓷与ZrO2增韧氧化铝陶瓷力学性能对比:

99%氧化铝陶瓷 氧化锆增韧氧化铝陶瓷

密度 3.85 3.93

抗折强度 350MPa480MPa

抗压强度 3600MPa 3300MPa

硬度 1900HV 1600HV

抗冲击强度 5MPam1/2 7MPam1/2

二、晶须、纤维增韧

晶须是具有一定长径比(直径0.1—1.8 um,长35-l50um),且缺陷少的陶瓷单晶。具有很高的强度,是一种非常好的陶瓷基复合材料的增韧增强体;纤维长度较陶瓷晶须长数倍,也是一种很好的陶瓷增韧体,同时两者可复合实用。用SiC、Si3N4等晶须或C、SiC等长纤维对氧化铝陶瓷进行复合增韧。晶须或纤维的加入可以增加断裂表面,即增加了裂纹的扩展通道。当裂纹扩展的剩余能量渗入到纤维(晶须),发生纤维(晶须)的拔出、脱粘和断裂时,导致断裂能被消耗或裂纹扩展方向发生偏转等,从而使复合材料韧性得到提高。但当晶须、纤维含量较高时,由于其拱桥效应而使致密化变得困难,从而引起密度的下降和性能下降。

三、颗粒增韧

在氧化铝材料中加入一定粒度的具有高弹性模量的颗粒(如SiC、TiC、TiN等)可以在材料断裂时促使裂纹发生偏转和分又,消耗断裂能,从而提高韧性。尽管颗粒增韧效果不如晶须、纤维,但用颗粒作为增韧剂制作颗粒增韧陶瓷基复合材料,其原料混合均匀化及烧结致密化都比纤维、品须复合材料简便易行。纳米颗粒复相陶瓷是在陶瓷基体中引入纳米级的第二相增强粒子,通常小于0.3um,可使材料的室温和高温性能大幅度提高,特别是强度值,上升幅度更大。

四、 氧化铝自增韧

采用纳米氧化粉末制备的陶瓷不加增塑剂仍旧在低温下显出极好的超塑性。纳米氧化铝对改善陶瓷晶粒的形状、品界特性等起到了很好的效果。通过合理选择成分及工艺,使一部分氧化铝晶粒在烧结中原位发育成具有较高长径比的柱状晶粒,从而获得晶须的一种增韧机制。这也称为原位增韧,这种技术消除了基体相与增强相界面的不相容性,保证了基体相与增强相的热力学稳定,并使界面干净,结合良好。

另外,控制显微结构;改变晶粒形状、粒径、品界特性、气孔率等提高其断裂韧性;使用亚微细且各向分布均匀氧化铝;提高氧化铝粉纯度,改善组织结构。这些都是增加氧化铝陶瓷韧性的有效手段。

精明的芝麻
激动的冰棍
2025-08-03 08:39:49
耐火材料增韧方法之一。由应力诱导相变造成一种耗能机制,从而产生显著的增韧效果。包括马氏体相变、铁弹性相变以及孪晶现象等。

相变增韧的典型范例是ZrO2增韧。ZrO2晶粒具有3种同质异构体,即立方晶相、四方晶相和单斜晶相。在通常情况下,各相稳定存在的大致温度范围是:立方相大于2300℃,单斜相小于1100℃,四方相大于1100℃。当ZrO2分散在其他陶瓷基体中,在烧成温度下,ZrO2颗粒一般以四方相存在。当冷却到某一温度时,即发生马氏体相变,转变成单斜Zr02,并伴随着一定的体积膨胀和晶粒形状的变化。但是当ZrO2颗粒弥散在其他陶瓷基体中,使它受到周围基体的束缚时,它的相变也受到抑制,使它向低温方向移动。调整周围基体的性质,有可能使四方ZrO2保持到室温。只有在基体受到外力作用,使基体对ZrO2颗粒的束缚作用松弛后,才触发了它向单斜相转变,从而达到相变增韧的效果。

采用ZrO2进行相变增韧的重要条件是保证材料中可相变的四方相有足够高的体积分数。还应考虑以下几点:(1)四方ZrO2和基体间热膨胀系数之差尽可能小。(2)ZrO2在室温下保持单斜相的临界晶粒尺寸随基质性质而变化。(3)高的相变驱动力(四方相一单斜相),如加入HfO2可以实现。(4)使颗粒尺寸分布变窄,颗粒间隔均匀。(5)基体有高的本征断裂韧性和高的弹性模量。

有魅力的跳跳糖
刻苦的台灯
2025-08-03 08:39:49

疲劳断裂实质上还是裂纹的扩展,最终导致的断裂。由于陶瓷比金属脆性大,对应力集中产生的疲劳裂纹扩展更敏感,在裂纹产生到最终断裂的时间短,在宏观上就表现为对疲劳的敏感。如果要更深一步了解,可以参考疲劳断裂相关书籍资料,有很多公式和参数从微观角度深层次进行分析。

众所周知,陶瓷材料具有高熔点、高硬度、高耐磨性、重量轻等优点,因此在工业领域中得到广泛的应用。但是陶瓷材料有一个致命弱点!那就是太脆了!这限制了陶瓷优良性能的发挥,也限制了其实际的应用,因此陶瓷的增韧技术。

一直是陶瓷行业研究的热点。1相变增韧关于相变增韧的研究主要是围绕ZrO2的相变特性展开的,是通过控制烧结工艺使内部的微观组织产生增韧相,消耗裂纹扩展所需能量的同时造成相变体积膨胀促使其它裂纹闭合,是一种自增韧过程。

以ZrO2和HfO2为例,随温度变化会发生以下同素异构转变:在实际材料中究竟何种增韧机制起主导作用,在很大程度上取决于四方相向单斜相马氏体相变的程度高低及相变在材料中发生的部位。至今为止,利用部分稳定氧化锆的相变增韧是最为成功的增韧方法之一。

但是由于许多脆性材料并不一定具备这种有利于增韧的相变,并且还受温度的影响较大,所以这种增韧方法还不能得到普遍应用。2微裂纹增韧单斜相ZrO2增韧Al2O3陶瓷和TiB2增韧SiC陶瓷是典型的微裂纹增韧。

微裂纹的形成将起到分散裂纹尖端能量的作用,增加了扩展过程中的表面能,从而使裂纹快速扩展受到阻碍,增加材料韧性。这就是微裂纹增韧,其原理。诱发微裂纹增韧主要有三种方法。

1、完成烧结后,温度降低过程中,自然产生。

2、烧结温度过高,晶粒异常长大,产生微裂纹。

3、材料受到外界应力作用。然而微裂纹增韧只增加了陶瓷集体的韧性,而对其强度是有很大的影响的,因此实际操作中,应适当控制微裂纹的产生。

优秀的钢笔
体贴的斑马
2025-08-03 08:39:49
xinjian113(站内联系TA)如果在你认为不错的环境下,升温与冷却都维持在良好的状态,还是容易碎,那就是陶瓷的硬度太大了,这样我们都会想到通过添加一定的柔软剂或是增加一些金属来降低其硬度了,如果这对你的产品其他性能不造成影响的话dahaitop1(站内联系TA)可以考虑加入一些纳米添加剂来改善!jx192(站内联系TA)也许与陶瓷本身的性能有关,或者你可以试下不同的晶型增韧试下封神之神(站内联系TA)硬度高和脆不脆是两回事陶瓷脆是其广泛应用最大的限制bmw13600(站内联系TA)陶瓷本来不就很脆么?jyzcd(站内联系TA)高能球磨你的原料粉末shoppingyan(站内联系TA)应该来说,脆是所有陶瓷的本性,你要是强度不够,还是有很多方法去改进的,脆还真是不好弄,顺便我也来学习学习dong1118(站内联系TA)太脆的话增韧就好了,很easy:D:Dwestyouday(站内联系TA)陶瓷的脆性主要是由于陶瓷体含有的缺陷太多引起的,陶瓷的断裂多发生在缺陷上。经常提到的增韧,机理是利用陶瓷相变产生体积变化,对陶瓷体内部产生压应力,抑制裂纹的生长导致增韧kafei8623(站内联系TA)建议你加一些我公司生产的纳米陶瓷粉体材料,来起到强化作用,增加韧性!scl302(站内联系TA)微晶,高密度liuj65(站内联系TA)脆性是共价键、离子键结构决定的,增韧方法很多的,纤维、晶须增韧,相变增韧,微晶,高密度等。zhangbin1(站内联系TA)因为陶瓷中主要是离子键,虽然坚硬,但质脆,经不起冲击。可以考虑晶粒细化增韧,微裂纹增韧,或四方氧化锆增韧小小木船(站内联系TA)和造粒,粘结剂,成型,升温和冷却的速度等等很多因素都有关liuchungao(站内联系TA)Originally posted by liuchungao at 2009-7-31 14:08:这和造粒,粘结剂,成型,升温和冷却的速度等等很多因素都有关系的,我们现在做的陶瓷环也有碰到类似的问题,正在慢慢的改进中! 降温助剂有没有很大的影响我不知道,但是跟材料体系是有关系的,我们做的STO的强度就比ZnO的大,但是两者有不同的用途,所以还都是要做的。

动人的雨
害羞的耳机
2025-08-03 08:39:49
四、陶瓷材料的分类

陶瓷材料已经成为一个十分庞大的家族,其分类也可依照不同的标准进行。

按性能分类:功能陶瓷、结构陶瓷

按用途分类:水泥、耐火材料、玻璃

按成分分类:氧化物陶瓷、氮化物陶瓷、硅化物陶瓷

先进陶瓷材料:

所有采用无机原料做成的材料都成为陶瓷材料

主要区别:(1)原料不同,大部分采用人工合成原料;

(2)在制备、成型技术与烧结工艺方面有重大革新

(3)材料的成分包括碳化物、氮化物、硼化物等

(4)材料的性能有大幅度的提高,主要应用于高科技领域。

先进陶瓷材料按其应用领域的不同可以分为工程陶瓷、功能陶瓷和生物陶瓷三大类。

工程陶瓷:主要包括氧化物类、氮化物类和碳化物

用于制造刀具和耐磨件,高温热电偶保护管及坩埚,集成电路基片和多层封装管壳及高频绝缘瓷体等,其用量约占结构陶瓷的一半以上。

氧化铝陶瓷(Al2O3):氧化铝含量在85%以上的材料统称为氧化铝陶瓷,含量在99%以上的称为刚玉陶瓷。氧化铝的熔点高达2050℃,很高的硬度(莫氏硬度为九级),弹性模量为390GPa,很好的绝缘性能和低的介电常数。

主要用途:现代陶瓷可用做量具,陶瓷密封件、陶瓷刃具以及陶瓷替代金属的零部件等。

半球面型特种陶瓷片镶嵌在特种橡胶内,形成既耐磨损又耐打击的坚固的防磨层。广泛适用于火力发电厂的输煤系统及冶金、钢铁系统的烧结厂的输料、配料系统的料斗、料仓等落差高、冲击大的部位上。

电子陶瓷95、99氧化铝陶瓷,可用于各种规格的电真空陶瓷管壳及金属化和釉化产品。为生产电真空器件的厂家提供电气性能、机械性能优越的配套瓷件。

氧化锆粉体经压制成型并经过高温烧结也可以制成陶瓷,称为氧化锆陶瓷,并非只是在陶瓷粉体中加入氧化锆粉体。

当氧化铝陶瓷(Al2O3)中加入ZrO2(非稳定ZrO2)粒子形成Al2O3+ZrO2(ZrO2增韧Al2O3)陶瓷时,则由于氧化锆(ZrO2)粒子转变诱发显微裂纹可使韧性显著提高。从氧化锆ZrO2含量及粒径对Al2O3+ZrO2陶瓷韧性的影响,可以看出,对应某一氧化锆ZrO2粒径有一个最佳ZrO2含量,即此时诱发裂纹密度较高,但又不相互连接。当氧化锆ZrO2过高时,形成相互连接裂纹而使韧性下降。

还可以看出,随氧化锆ZrO2粒子走私的增大,临界氧化锆ZrO2含量下降,说明大氧化锆ZrO2粒子诱发的裂纹尺寸大,容易相互连接形成危险裂纹。将氧化锆ZrO2的t-->m相变韧化作用及由于t-->m相变而派生出来的显微裂纹韧化与残余应韧化作用引入Al2O3等基体,可使其韧性得到显著提高。氧化锆ZrO2增韧氧化铝Al2O3基体复合材料的性能与ZrO2含量的关系。

增加陶瓷韧性的主要方法:

(1)采用高纯、超细的粉末原料,改进成型和烧结工艺,从而获得结构致密、均匀的陶瓷材料。

(2)引入细小弥散分布的第二相颗粒,实现颗粒增强与增韧,其主要原理是利用两相膨胀系数的差异,在基体与第二相之间产生一个压应力,使裂纹尖端的张应力得到缓解。

(3)通过相变增韧。利用陶瓷在相变时产生的体积变化,在受到应力时诱发相变,由于产生体积变化而产生压应力,这种压应力正好抵消了裂纹尖端的拉应力从而使断裂韧性提高。

(4)纤维增强与增韧。在陶瓷中加入另一种结构上更加完好的陶瓷晶须。由于在裂纹扩展时需要把断裂面上的晶须拔出,使得阻力增加而断裂韧性增加。