最详细的瓷砖分类手册 教你正确区分瓷砖
瓷砖是我们最常用的装修主材之一,也是必不可少的材料之一,但对于瓷砖的分类,该在哪里用那些瓷砖最好还是有很多人分不清的,今天小编就带大家去了解下瓷砖分类:
瓷砖分类:
一、按瓷砖制作工艺及特色分
瓷砖种类,按其制作工艺及特色可分为釉面砖、通体砖、抛光砖、玻化砖及马赛克。不同特色的瓷砖当然有各自的最佳用途,对瓷砖知识有足够的了解,可以在装饰居室时做到有的放矢,物尽其用。
1、通体砖:通体砖的表面不上釉,而且正面和反面的材质和色泽一致,因此得名。通体砖比较耐磨,但其花色比不上釉面砖。分类分为防滑砖、抛光砖和渗花通体砖。适用范围被广泛使用于厅堂、过道和室外走道等地面,一般较少使用于墙面。
2、釉面砖:釉面砖就是砖的表面经过烧釉处理的砖。一般来说,釉面砖比抛光砖色彩和图案丰富,同时起到防污的作用。但因为釉面砖表面是釉料,所以耐磨性不如抛光砖。分类按原材料分为陶制釉面砖和瓷制釉面砖。依光泽不同,又分为亚光和亮光两种。适用范围厨房应该选用亮光釉面砖,不宜用亚光釉面砖,因油渍进入砖面之中,很难清理。釉面砖还适用于卫生间阳台等。
3、抛光砖:抛光砖就是通体砖经过打磨抛光后而成的砖。相对于通体砖的平面粗糙而言,抛光砖就要光洁多了。这种砖的硬度很高,非常耐磨。在运用渗花技术的基础上,抛光砖可以做出各种仿石、仿木效果。分类可分为渗花型抛光砖、微粉型抛光砖、多管布料抛光砖、微晶石。适用范围除卫生间、厨房外,其余多数室内空间都可使用。
4、玻化砖:玻化砖是由石英砂、泥按照一定比例烧制而成,然后经打磨光亮但不需要抛光,表面如玻璃镜面一样光滑透亮,是所有瓷砖中最硬的一种。玻化砖在吸水率、边直度、弯曲强度、耐酸碱性等方面都优于普通釉面砖、抛光砖及一般的大理石。但是玻化砖也不是完美的,它的缺陷就是经过打磨后,毛气孔暴露在外,灰尘、油污等容易渗入。分类主要是地面砖。属于抛光砖的一种。适用范围玻化砖适用于客厅、卧室、走道等。
5、马赛克:马赛克是一种特殊存在方式的砖,它一般由数十块小块的砖组成一个相对的大砖。耐酸、耐碱、耐磨、不渗水,抗压力强,不易破碎。分类它主要分为陶瓷马赛克、大理石马赛克、玻璃马赛克。适用范围它以小巧玲珑、色彩斑斓被广泛使用于室内小面积地、墙面和室外墙面和地面。
二、按瓷砖功能分
瓷砖按照功能分为地砖、墙砖及腰线砖等。
1、地砖:按花色分为仿西班牙砖、玻化抛光砖、釉面砖、防滑砖及渗花抛光砖等。
2、墙砖:按花色可分为玻化墙砖、印花墙砖。
3、腰线砖:多为印花砖。为了配合墙砖的规格,腰线砖一般定为60mm×200mm的幅面。
三、按瓷砖吸水率分
按瓷砖的吸水率分为主要以下三种:
1、陶质:指陶瓷的吸水率≥6%的陶瓷产品,主要用于墙面装饰。
2、半陶半瓷:指陶瓷的吸水率≥3%而<6%的陶瓷产品。<><6%的陶瓷产品。<>
3、全瓷:指陶瓷的吸水率<3%的陶瓷产品,可以广泛的墙地面装饰。<><3%的陶瓷产品,可以广泛的墙地面装饰。<>
四、按瓷砖使用场合分
按使用场合不同可以分为以下几种:
1、内墙砖:使用于室内墙面的陶瓷材料
2、地砖:用于地面的陶瓷产品
3、外墙砖:用于建筑外墙面以及阳台的陶瓷材料
4、广场砖:用于户外大型广场以及人行道等场合的陶瓷产品。
当然,这种分类方式也不是完全的,如玻化砖可以作为地砖,也可以用于内墙,甚至于外墙,但是釉面内墙砖是不适合用于地面,主要是耐磨性较差。
五、按瓷砖放射性分
按照瓷砖的放射性可以分为A、B、C等。
1、A等级:A 类的使用范围不受限制,可以在家庭装修的各个场所使用。所以室内地砖的环保性能必须达到A类标准。国家对于瓷砖的放射性问题使用的标准为:GB6566-2001。A类装修材料中天然放射性核素镭-226、钍-232、钾-40的放射性比活度同时满足IRa≤1.0和Ir≤1.3要求的为A类装修材料。
2、B等级:B类装修材料不满足A类装修材料要求但同时满足IRa≤1.3和Ir≤1.9要求的为B类装修材料。B类装修材料不可用于I类民用建筑的内饰面,但可用于I类民用建筑的外饰面及其他一切建筑物的内、外饰面。
3、C等级:C类装修材料不满足A、B类装修材料要求但满足Ir≤2.8要求的为C类装修材料。C类装修材料只可用于建筑物的外饰面及室外其他用途。Ir>2.8的花岗石只可用于碑石、海堤、桥墩等人类很少涉及到的地方。
六、按瓷砖质量分
按国家标准规定的等级划分瓷砖可分为两个级别:1、优等,2、一级品。优等品是最好等级,一级品是指有轻微瑕疵的产品。
还有一种瓷砖的等级划分分类为:1、A级品,2、B级品。A级品是最好等级,A级品分为AAA级、AA级和A级,AAA级是最好的等级。B级品是有轻微瑕疵的产品。
七、按瓷砖成型分
按瓷砖成型来分类可以把瓷砖分成干压成型砖、挤压成型砖、可塑成型砖。
八、按瓷砖烧成分
按瓷砖烧成分可以把瓷砖分类为氧化性瓷砖、还原性瓷砖。
九、按瓷砖施釉分
瓷砖需要施釉,按照施釉的多少来分类瓷砖可分为有釉砖、无釉砖。
瓷砖的分类方法及依据非常多,所以要看是什么类别的瓷砖还得清楚是根据什么来区分的,瓷砖分类就给大家介绍到这里了,更多瓷砖方面信息请继续关注土巴兔学装修。如果您还是犹豫着不知道怎么选购瓷砖的话,可以申请土巴兔装修保,让专业的装修质检人员根据我们的装修要求去给出建议,同时装修保还保障我们装修各个方面的质量情况!
基本信息: 作者:姚江波 出版社: 中国轻工业出版社第1版 (2009年5月1日) 平装: 287页 正文语种: 中文 开本: 32 内容简介 《瓷器鉴赏收藏手册》编写的主要目的,是为了让人们通过观察瓷器的主要特征看到瓷器的全貌,学习和积累瓷器收藏鉴别的知识,学以致用,从而为收藏者在鉴别和购买瓷器收藏品时提供基本的鉴别知识和实例对比。 《瓷器鉴赏收藏手册》内容十分具体,收藏者在逛收藏品市场之时可以携带此书,这是新手和资深鉴赏家都能够用来做对比使用的一本书。《瓷器鉴赏收藏手册》严格从瓷器鉴定学的角度出发,借鉴科学考古发掘所出土的文物,以及历史、人类学等诸多方面的权威资料,将瓷器鉴定置于社会历史大背景下来考虑,以保证《瓷器鉴赏收藏手册》的科学性、严谨性和可读性。《瓷器鉴赏收藏手册》里面的内容涉及大大小小的鉴定依据,并且环环相扣,是总条目达上千条的古瓷器图文手册。书中包含从早期出土的陶器至清代出土与保存下来的古瓷器的资料,例如景德镇瓷器中最有名的青花瓷。纷繁复杂的瓷器收藏知识变得一目了然,是真正掌握瓷器识真的法门。本书采用真品图片,文字简练,一语中的,一针见血,是瓷器收藏者真正需要的一本书。
本书按普通陶瓷生产工艺,从原料、坯釉料配方及其计算、坯料的制备、成型、坯体的干燥、釉及釉料制备、烧成七个大部分介绍普通陶瓷生产工艺技术。
2、陶瓷墙地砖工厂技术员手册 化学工业出版社 2004
本书介绍陶瓷墙地砖生产所用原料、生产工艺、技术装备等,重点分析工艺参数和制品特性的关系、缺陷产生及排查方法。
3、陶瓷工艺学 中国轻工业出版社 2001
本书是在原普通高校使用的陶瓷专业教材的基础上,总结了使用中的经验和教训,根据当前国内外陶瓷工业发展形势,重新编写而成。
根据标准参考数据计划,NIST的各实验室正在将他们的数据库产品不断加入到在线访问的数据库行列,建立了一系列的科学数值数据库。通过更新现有的数据库及开发新数据库,NIST不断地丰富它的评价数值数据集,为社会提供可靠的、经过评价的数值数据。社会各界的工程师和科学家依靠 NIST的标准参考数据对许多关键技术进行决策。
NIST的标准参考数据库系列包括50多个数据库,其中大部分是建在微机上的多用途数据包,根据学科可分为以下几类:分析化学(包括谱学),原子和分子物理,生物技术,化学与晶体结构,化学动力学,工业流体与化工,材料性能,热力学与热化学,以及NIST的其它数据库。
分析化学类包括质谱库、红外谱、光电子能谱等数据库;原子与分子物理类包括光谱性能、c-射线衰减系数及交叉截面、原子光谱等数据库;生物技术类包括生物大分子结晶库等数据库;化学与晶体结构类有电子衍射等数据库;化学动力学类包括化学动力学、溶液动力学等数据库;工业流体与化工类有物质的热力学性能数据库;材料性能类包括结构陶瓷、腐蚀性能、摩擦材料、高温超导等数据库;表面数据类包括表面结构、弹性电子散射交叉截面等数据库;热化学类包括化学热力学、有机化合物热力学性能估算、JANAF热化学表等数据库。
NIST提供科学数值数据服务的方式主要有:①将数据与分析仪器连在一起出售,如质谱库中有近10万个化合物数据,附在质谱仪中出售的有常用的几万个化合物;②以PC数据包方式出售;③联机数据服务;④作为其它大的软件包的一部分;⑤直接装入用户的计算机。
具体的在线科学数据库名单如下:
儿童人体测量数据库(AnthroKids - Anthropometric Data of Children),
铂/氖阴极管灯泡的光谱图(Atlas of the Spectrum of a Platinum/Neon Hollow-Cathode Lamp in the Region 1130-4330 &Aring),
用于电子结构计算的原子参考数据库(Atomic Reference Data for Electronic Structure Calculations),
原子光谱数据库(Atomic Spectra Database,ASD),
原子谱线加宽目录数据库(Atomic Spectral Line Broadening Bibliographic Database),
原子跃迁概率数据库(Atomic Transition Probability Bibliographic Database),
原子重量及同位素成分数据库(Atomic Weights and Isotopic Compositions),
光子总交叉截面(衰减系数)测量目录(Bibliography of Photon Total Cross Section (Attenuation Coefficient) Measurements),
生物高分子结晶数据库(Biological Macromolecule Crystallization Database),
陶瓷互联网手册(Ceramics WebBook),
化学动力学数据库(CKMech,Chemical Kinetic Mechanisms),
化学互联网手册(Chemistry WebBook),
单分子反应计算数据库(ChemRate: A Calculational Database for Unimolecular Reaction),
视觉协同测试床(CIS2 Visual Interoperability Testbed),
化学动力学机理(CKMech,Chemical Kinetic Mechanisms),
计算化学比较和基准数据库(Computational Chemistry Comparison and Benchmark Database),
计算机辨认工具测试项目网站(Computer Forensics Tool Testing (CFTT) Project Web Site),
二阶光谱数据库(Diatomic Spectral Database),
运算法则和数据结构字典(Dictionary of Algorithms and Data Structures),
电子与等离子体加工用气体相互作用数据 (Electron Interactions with Plasma Processing Gases),
元素数据索引(Elemental Data Index),
工程统计学手册(Engineering Statistics Handbook),
火灾研究信息服务(Fire Research Information Services ,FRIS),
基本物理常数(Fundamental Physical Constants),
中性原子的基本水平和电离能量(Ground Levels and Ionization Energies for the Neutral Atoms),
数学软件指南(Guide to Available Mathematical Software),
NIST计量结果不确定性的评估与表达指南(Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results),
基础原子光谱数据手册(Handbook of Basic Atomic Spectroscopic Data),
绝缘体和建筑材料的热传递性质(Heat Transmission Properties of Insulating and Building Materials),
高温超导材料数据库(High Temperature Superconducting Materials Database),
HIV蛋白酶数据库(HIV Protease Database),
人线粒体蛋白数据库(Human Mitochondrial Protein Database),
烃类光谱数据库(Hydrocarbon Spectral Database),
二氧化碳同位素测定的交互规则(Interactive Algorithm for Isotopic CO2 Measurements),
国际比较数据库(International Comparisions Database),
ITS-90热电偶数据库(ITS-90 Thermocouple Database),
自动数据分析工具(MassSpectator Automated Data Analysis Tool),
矩阵市场数据库(Matrix Market Database),
相位图和计算热动力学―焊接系统(Phase Diagrams and Computational Thermodynamics - Solder Systems),
多轮烃结构索引(Polycyclic Aromatic Hydrocarbon Structure Index),
聚合物方法数据库(Polymer MALDI MS Methods Database),
高级材料的性质数据总结(Property Data Summaries for Advanced Materials),
断裂韧度性质数据总结(Property Data Summaries for Fracture Toughness),
氧化玻璃的性质数据总结(Property Data Summaries for Oxide Glasses),
蛋白质数据银行(Protein Data Bank (PDB) ( in collaboration with RCSB )
放射性核半衰期计量(Radionuclide Half-Life Measurements),
用于观测星际分子微波跃迁的雷达技术扫描频率(Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions - 1991 Revision),
加强渗透性数值数据库(Database on Reinforcement Permeability Values),
短暂前后重复的DNA数据库(Short Tandem Repeat DNA Internet Database),
无铅焊料的焊接特性数据库(Database for Solder Properties with Emphasis on New Lead-free Solders),
可溶性数据库(IUPAC-NIST Solubility Database),
溶解动力学数据库(NDRL/NIST Solution Kinetics Database on the Web),
坎德拉X-射线天文台光谱数据库(Spectral Data for the Chandra X-ray Observatory),
统计参考数据库(Statistical Reference Datasets),
电子、质子和氦离子的静止能与行程表(Stopping-Power and Range Tables for Electrons,Protons,and Helium Ions),
NIST结构陶瓷学数据库(NIST Structural Ceramics Database),
合成聚合物质谱项目(Synthetic Polymer Mass Spectrometry Project),
X-射线质量衰减系数和能量吸收系数表(Tables of X-Ray Mass Attenuation Coefficients and Mass Energy - Absorption Coefficients),
酶催化反应的热力学数据库(Thermodynamics of Enzyme-Catalyzed Reactions Database),
半导体器件加工用的气体的热物理特性数据库(Database of the Thermophysical Properties of Gases Used in the Semiconductor Industry),
三原子光谱数据库(Triatomic Spectral Database),
Vibrational branching ratios and asymmetry parameters in the photoionization of CO2 in the region between 650 &Aringand 840 &Aring
可见物粘合剂数据集(NIST Visible Cement Dataset),
Wavenumber Calibration Tables from Heterodyne Frequency Measurements
用于剂量测定的X-射线衰减与吸收表(X-Ray Attenuation and Absorption for Materials of Dosimetric Interest),
X-射线波型系数、衰减与散射表(X-Ray Form Factor,Attenuation and Scattering Tables),
X-射线电光子分光光谱数据库(NIST X-ray Photoelectron Spectroscopy Database),
X-射线跃迁能量数据库(X-Ray Transition Energies Database),
光子交叉截面数据库(XCOM: Photon Cross Sections Database)。
注浆成形的生产过程由以上9道工序组成,其中:
吃浆就是模具吸附泥浆中的水分,形成坯体的工序。
放浆又称空浆,是当坯体形成一定厚度时,排出多余泥浆的过程。放出的泥浆返回浆池(或罐)。回浆的方式有:(1)人工端桶回浆:(2)自然压力回浆,利用管道的坡度,使泥浆流回泥浆池;(3)利用泥浆泵抽回余浆:(4)负压回浆,即利用下注式压力注浆管道,用真空泵形成的负压,把泥浆抽回到泥浆罐。在以上各种方式中,除第一种外,均属于管道回浆。
巩固:放浆后坯体很软,不能立即脱模需经过一段时间继续排出坯体水分,增加其强度。这段时间称为巩固。巩固是注浆成形的主要工序之一,其持续时间约为吃浆时间的一半。
在巩固过程中由于模型继续吸水,坯体含水率不断下降,坯体由于水分排山而逐渐收缩。当坯体含水率下降到19—20%左右时(即脱模点),巩固过程结束,此时坯体很容易从模型内取山。
脱模:从模型中取出粗坯的过程。脱模点的掌握是一个关键。脱模过早,坯休强度不够,脱模困难,且脱模后坯体易塌陷;脱模过迟,坯体会发生开裂。
修粘:包括一次修坯、打眼与粘接等过程。传统的注浆方式,脱模后的坯体内外表面都很粗糙。一般需经多次修坯,而且粘接的工作量也很大。现代采用高强石膏模或树脂模,压力注浆等手段,修粘的工作量已大为减少。修坯、打眼与粘接这些工作都需手工进行,容易出现废品,必须掌握好坯体含水率。
干燥: 预干燥(也称半干),即将坯体含水率从15%~17%(粘接时的含水率)降低到8%左右。
传统浇注方式,坯体的预干燥是在注浆车间内进行自然干燥的。在工人下班后的16小时内,注浆车间内保持高温度(33~40℃)、高湿度(40%一60%),使坯体缓慢的干燥。经预干燥后,湿坯休的含水率从15%~17%下降到8%一10%。要注意防止因干燥过急或干燥不均匀,而造成废品。
现代注浆方式一般采用热风直接对坯休进行强制干燥,玻化瓷坯体预干燥收缩率为4%,粘土坯体预干燥收缩率为2%。
二次修坯(修刷):是注浆成形的最后一道工序,将最终决定坯体的尺寸。修刷时坯体含水量要少、刷坯用水也要少,不能有油污。坯体修刷完毕后存放在28-35℃的室内,准备进行施釉。
2 注浆操作过程要点
(1)注浆时,要擦掉模型上的泥缕,进浆速度不宜太快,以使模型中的空气随泥浆的注入而排出,避免空气混入泥浆中,以及避免使坯体表面产生缺陷。
(2)浇注大型产品时,在棱角等收缩大的部位,注浆前,可在模型内的相应处贴上绸布,使各部分水分移动的速度尽量均衡,以防止开裂。
(3)需上型芯成形的制品,事先在型芯上撒石粉,帮助脱模。
(4)掌握好吃浆时间的长短,以保证坯体的厚度。
(5)放浆前应敞开气眼,速度不宜太快,以免模型内产生负压,使坯体过早脱离模型造成变形或塌落。
(6)修粘时,零部件坯体应比主坯体含水率稍低2%~3%。
陶瓷注浆成形模具制造过程
1 模具的制造过程
卫生陶瓷模具的制造是一项既复杂又细致的工作,需要高超的技艺。为了制成供注浆使用的工作模,需经过一系列严密地工作。其一般制造过程可分为以下五步:
第一步:制作原型 原型尺寸与卫生陶瓷成品一致。系根据设计图纸(或样品)做成。若已有实物样品需进行仿制,则可省去第一步。
第二步:制作原胎 原胎又称模种,其尺寸与卫生陶瓷坯体一致。系根据原型经过放尺(增加干燥、烧成过程的总收缩)制成。在有些情况下也可直接根据设计图纸或实物样品,经过放尺制成。
第三步:制作凹胎 凹胎又称模种,系由原胎翻制而成。
第四步:制作凸胎 凸胎又称母模,系由凹胎翻制而成。它一般包括底模与模围或型芯与模围。
第五步:制作工作模 工作模又称子模,系由凸胎翻制而成,供注浆成形使用。
2 模具的材质与分类
(1)传统浇注用的石膏模具
其制造过程:将标准的β型半水石膏粉,加水制成石膏浆,经搅拌、真空脱气等处理,注入母模内,石膏硬化后,脱模,再经适当修整,装配,在50—60℃下干燥5~7天即成。
(2)低压快排水浇注用的石膏模具
有带微孔管网和不带微孔管网两种。带微孔管网的石膏模具与前面不同的主要是:在浇注前要先在母模内的相应部位(距浇注工作面2公分处),放入经过定型的管网,这些管网的接口,能与成形线上的真空和压缩空气管路相连接,以便浇注时排水、脱模和模具脱水。
制造微孔管网的材料有:微孔玻纤软管,管径φ=7.5mm;编织网格用的尼龙丝φ=9.5um:网用的树脂浸渍液(系由树脂、催化剂、引发剂、滑石粉等配制而成)。将这些编网材料在另一个专门制作的辅助母模内编成管网并固化,脱模取出后,用于制作母模。
所用的石膏有β—石膏或α—石膏。后者比前者抗折强度要高1倍;表面显微硬度要高60%,抗拉强度则要高山约2倍。但标准稠度吸水率则低30%左右。故α—石膏更适宜制作强度高的石膏模型。
(3)适于卫生瓷高压注浆用的微孔树脂模具
这种微孔树脂模具分为带有管网的和不带管网的两种。为能满足卫生瓷高压注浆要求,共抗压强度—般不小于20兆帕,在10兆帕压力作用下应无明显变形,透水率在0.10~0.13 m3/m2s。这种模具的主要材料是树脂,其制造关键是高强度树脂材料的配方及其制备方法。
用于高压注浆的模具制造过程比较复杂,各公司公布的资料又很少,需要时可参阅“建筑卫生陶瓷工程师手册”第8章的有关内容。
(4)化学石膏模具
与前述低压快排水模具制造过程基本相同。共不同点主要是在模具材料中加入了能提高具强度的化学试剂。
制作要点:化学石膏浆注入模具后,在凝固过程中,从微孔管网入口吹入压缩空气,使工作模内形成气孔,石膏凝固后从母模里脱出工作模。修补表面的小缺陷,在非工作面涂刷防水层(20%虫漆乙醇溶液)。
适用范围:化学石膏模具使用的压力范围是0.4—0.6兆帕,可用于中压注浆。
3 注浆前的模型处理
对注浆用模具的基本要求是:(1)有良好的吸水性以保证有足够的吃浆速度,缩短注浆周期;(2)有足够的机械强度,包括抗折、抗拉、抗压强度,以保证制品不变形:(3)表面光滑、无油污和泥缕,易于脱模,坯体质量好,可减少修坯的工作量。(4)尺寸、形状符合要求;(5)使用寿命长。
模型的处理过程:
(1)烘干
烘干的目的是排出模型中过多的水分,以利于注浆成形。注浆用的石膏模型,其水分含量最大不应超过19%,最小不低于4%。
正常浇注中的石膏模型,一般在每天成形使用后,及时清理干净口缝上的跑边泥后,就放在车间内自然烘干。保持车间内温度在28~35℃,相对湿度在50%~70%。
若需在60—60℃下对模型进行烘干,则应组装成套,上紧夹具,放置平稳。不要单件进行干燥,以免变形。
(2)清理
清理就是清除使用后模型上的泥、碱毛、灰土等杂质。
(3)擦模
擦模又叫刷水,是模型处理工作中最为重要的一环,也是保证产品质量的关键。擦模未擦好,易出现塌、变形、裂等缺陷。
擦模对成形的作用主要是通过润湿模型,并擦出一层石膏浆,在模型表面形成Ca-粘土结构层,使坯体与模型能适当紧密的结合,达到湿坯不粘模和不出坯裂的目的。
对不同的具体情况(如模型的新旧程度、干湿程度、环境的温度与湿度、模型的形状和部位等)需要有不同的擦法,操作人员只能通过实践灵活掌握:
(4)组装
组装是注浆前模型处理的最后一道工序。把需要组装在一起的模具部件,装卡牢固,塞严防浆口,准备注浆
陶瓷干燥法及干燥设备
1.1 卫生陶瓷生产对干燥器的要求
(1)要有良好的干燥质量,而且干燥制度要易与控制,操作方便灵活。
(2)产量要高,并要利于下一道工序的进行。
(3)能源消耗要少,在可能情况下应尽量利用工厂的余热。
在自然干燥的老式企业里干燥的能耗很高,有的甚至达到生产能耗的40%。由于干燥的操作温度较低,而陶瓷烧成又离不开高温窑炉,因此一般陶瓷工厂都有大量余热可供利用。
(4)生产强度高,占地少。
(5)省力,省工序,特别是易于和前后工序连成自动线,减少搬运次数。
(6)对环境污染小。现代注浆车间里有大量精密的机械设备,有时需要安排两班或三班生产。因此,不能适应高温高湿的环境。
1.2 干燥器的分类
(1)按干燥制度是否进行控制
可分为:自然干燥和人工干燥。由于人工干燥是人为控制干燥过程,所以又称强制干燥。
(2)按干燥方法不同进行分类 可分为:
1)对流干燥 其特点是利用气体作为干燥介质,以一定的速度吹拂坯体表面,使坯体得以干燥。
2)辐射干燥 其特点是利用红外线、微波等电磁波的辐射能,照射被干燥的坯体使其得以干燥。
3)真空干燥 这是一种在真空(负压)下干燥坯体的方法。坯体不需要升温,但需利用抽气设备产生一定的负压,因此系统需要密闭,难以连续生产。
4)联合干燥 其特点是综合利用两种以上干燥方法发挥它们各自的特长,优势互补,往往可以得到更理想的干燥效果。
还有一些干燥方法,在卫生瓷生产中没有得到应用。
按干燥制度是否连续分为间歇式干燥器和连续式干燥器。
连续式干燥器又可按干燥介质与坯体的运动方向不同分为顺流、逆流和混流;按干燥器的外形不同分为室式干燥器、隧道式干燥器等。
1.3 成形车间干燥系统
这种干燥系统主要适用于石膏模每天只成形一次(白班成形)的工厂,按间歇方式操作。按照干燥制度能否调节分成以下两种干燥系统。它们具有的共同优点是:坯体在脱模以后,无需多搬动即可进行干燥,不需另建干燥器,节省投资:能充分利用成形车间的热量和空间。
(1)传统的成形车间干燥系统
过去传统的方式是在成形车间内安装蒸汽管道和散热器。在成形工人下班后,打开蒸汽阀门,提高成形室内的温度,对坯体进行加热干燥。
由于车间内湿度不能控制,加热效率很低,现在已较少使用。
(2)带温、湿度自动控制的成形车间干燥系统
这种系统已属于人工干燥,其结构如下图所示:
图中,在各组台架之间均匀设置吹风管道(3支或更多)。室外新鲜空气由抽风口被吸入管道内,与室内部分再循环的干燥废气混合,经过滤器除去空气中的杂质,再经冷却管、加热器,最后由通风机加压后送入吹风支管,对湿坯进行对位干燥。
与传统干燥方式相比,这个系统具有以下特点:
(1)利用废气再循环,可以节约加热器的热量消耗;
(2)干燥制度具有可调节性。配合自动控制系统后,可以按给定的程序,准确调节干燥介质的温度、湿度,因此干燥质量好。
(3)采用多个送风口,对位吹风干燥,室内温、湿度比较均匀,能量利用率有所提高。
热源可以用蒸汽、窑炉余热、或另设热风炉产生热风。
图中所示即为采用蒸汽的情况,此时需要装设间壁式(又称表面式)热交换器,加热空气。热交换器的形式,最好采用空气侧带肋片的热管式换热器。
若是利用窑炉余热,需根据具体情况决定:当抽取的热风是清洁的,没有混入窑内气体就可以直接掺入干燥废气,调整温、湿度后,作为干燥介质使用:当利用烟气余热时,可在烟道装设间壁式热交换器,也可将烟管通入成形室内利用其余热,但此时无法控制干燥制度;当抽取窑内冷却制品的空气时,因为容易混入烟气或杂质,最好经热交换后使用。
另设热风炉的情况,可参照蒸汽加热器的办法处理。
由于成形车间很大,室内热气体上浮,即所谓气流分层。上部热气流具有大量热能而难以利用,下部又容易漏入冷风。即使采用棉门帘等方法密封,也难达到理想效果。一些厂家在屋顶安装多个吊扇,并合理布置再循环抽风口及送风口的位置,引导室内气流合理流动,可以在一定程度上改善由于气流分层造成的恶果。坯体的干燥制度也有两种情况:一种是湿修后的坯体,其含水率较高;另一种是干修后的坯体,其含水率较低。
2006-12-19 22:34:21
陶瓷坯体的干燥过程
在对流干燥过程中介质与坯体之间既有热交换,又有质交换,可以将其分为下面三个既同时进行又相互联系的过程:
(1)传热过程
干燥介质的热量以对流方式传给坯体表面,又以传导方式从表面传向坯休内部。坯体表面的水分得到热量而汽化,由液态变为气态。
(2)外扩散过程
坯体表面产生的水蒸汽,通过层流底层,在浓度差的作用下,以扩散方式由坯体表面向干燥介质中移动。
(3)内扩散过程
由于湿坯体表面水分蒸发,使其内部产生湿度梯度,促使水分由浓度较高的内层向浓度较低的外层扩散,称湿传导或湿扩散。
当坯体中存在有温度梯度时,也会引起水分的扩散移动,移动的方向指向温度降低的方向,即与温度梯度的指向相反,这种单由温度梯度引起的水分移动称热湿传导或称热扩散。
在实际的干燥过程中,水分的内扩散过程一般包括湿传导和热湿传导的共同作用。
(二)坯体干燥过程的特点
干燥过程依次分为如下几个阶段; (1)加热阶段
由于干燥介质在单位时间内传给坯体表面的热量大于表面水分蒸发所消耗的热量,因此受热表面温度逐步升高,直至等于干燥介质的湿球温度,即到达图中A点,此时表面获得热与蒸发耗热达到动平衡,温度不变。此阶段坯体水分减少,干燥速率增加。
(2)等速干燥阶段
本阶段仍继续进行自由水排除。由于坯体含水分较高,表面蒸发了多少水量,内部就能补充多少水量,即坯体内部水分移动速度(内扩散速度)等于表面水分蒸发速度,亦等于外扩散速度,所以表面维持潮湿状态。另外,介质传给坯体表面的热量等于水分汽化所需之热量,所以坯体表面温度不变,等于介质的湿球温度。坯体表面的水蒸汽分压等于表面温度下的饱和水蒸汽分压,干燥速率恒定,故称等速干燥阶段。
因本阶段是排除自由水,故坯体会产生体积收缩,收缩量与水分降低量成直线关系,若操作不当,干燥过快,坯体极易变形、开裂,造成干燥废品。
等速干燥阶段结束时,物料水分降低到临界值,K点即为临界水分点。此时尽管物料内部仍是自由水,但在表面一薄层内已开始出现大气吸附水。
(3)降速干燥阶段
K点为等速干燥阶段与降速干燥阶段的转折点。自K点继续降低水分,过程即进入降速阶段。此时,坯体含水量减少,内扩散速度赶不上表面水分蒸发速度和外扩散速度,表面不再维持潮湿,干燥速率逐渐降低。由于表面水分蒸发所需热量减少,物料温度开始逐渐升高。物料表面水蒸汽分压小干表面温度下的饱和蒸汽分压。
由图3-15可见,此阶段排除的是大气吸附水。当物料水分下降至等于平衡水分时,干燥速率变为零,干燥过程终止。即使延长干燥时间,物料水分也不再变化。此时物料的表面温度等于介质的干球温度,表面水蒸汽分压等于介质的水蒸汽分压。
降速干燥阶段的干燥速率,取决于内扩散速率,故又称内扩散控制阶段,此时,物料的结构、形状、尺寸等因素影响着干燥速率。
由于本阶段排除的是大气吸附水,坯体不产生体积收缩,不会产生干燥废品。