如何理解贴片陶瓷电容器的Q值 和ESR:
本公司除了提供性能卓越的射频RF 元器件外,还致力於为客户提供精确和完整的性3 y) i" F! zB能资料。为了达到这个目标,这篇文章裏我们详细的讨论Q和ESR的测量方法和理解。2 _3 P9 K1 N+ P$ @$ M7 I理论上,一个“完美”的电容器应该表现为ESR为零欧姆、纯容抗性的无阻抗元件。不论$ H$ ~3 d6 d* l6 m/ B/ p何种频率,电流通过电容时都会比电压提前正好90度的相位。* d p&Z7 P, \" @) v8 m实际上,电容是不完美的,会或多或少存在一定值的ESR。一个特定电容的ESR随著频率# i% ]: R* z. w8 x的变化而变化,并且是有等式关系的。这是由於ESR的来源是导电电极结构的特性和绝缘介质1 F" E2 Y# y% }的结构特性。为了模型化分析,把ESR当成单个的串联寄生元。过去,所有的电容参数都是在2 @4 u5 G( b4 ^0 V% r- T1MHz的标准频率下测得,但当今是一个更高频的世界,1MHz的条件是远远不够的。一个性能/ yV9 \) bd" D/ u优秀的高频电容给出的典型参数值应该为:200MHz ,ESR=0.04Ω;900MHz, ESR=0.10Ω;! d" r- e" [3 e) p" J$ d2000MHz,ESR=0.13Ω。&n, m" v) s, [, N$ Q- w8 w: |Q值是一个无量纲数,数值上等於电容的电抗除以寄生电阻(ESR)。Q 值随频率变化而有5 H3 p) T- ^" Q3 Wr很大的变化,这是由於电抗和电阻都随著频率而变。频率或者容量的改变会使电抗有著非常大&f" p$ `0 y# }2 H" B# I% E5 ^9 y的变化,因此Q值也会跟著发生很大的变化。从公式一和二上可以体现出来:3 e3 N/ @, q+ w6 R公式一:|Z| = 1 / ( 2πf C)/ S6 n. _1 p: ]# @2 W7 g5 W其中,|Z|为电抗的绝对值,单位Ω;f为频率,单位Hz;C为容量,单位元F。! A+ n8 {4 r$ m3 R公式二:Q = |Z| / ESR9 Y2 f2 E0 O" S% }2 k4 rT, D其中,Q代表“品质因素”,无量纲;|Z|为电抗的绝对值,单位Ω;ESR为等效串联电阻, L! _4 ~5 K7 R3 e% AR单位Ω。+ X( @4 X/ ]&G! o$ E% u3 q用从向量网路分析器收集而得的S参数去推导ESR是不可信的。主要原因是这个资料的精3 [. t6 z. {8 `# ]度受限於网路分析器在50Ω系统中的精度(典型的± 0.05 dB测量精度在电容低到±0.01 dB. {8 F# T3 l0 C低损耗区是精度不足的)。同样,用LCR仪表去测量高Q器件的Q和ESR也是不可信的。这是- R8 ]s. E. p# R8 p( C! I由於当元件的Q 值非常高时,LCR 仪表不能正确地分辨出非常小的电阻(R)和非常大的电抗L&a" s! @+ C(Z)。因此,高Q电容器的ESR和Q的测量方法,一般使用作为行业标准的谐振线路测试法。2 i0 l" v+ i9 ^U" @ J2 |这种测试方法作为在射频RF上测量Q和ESR 的行业标准而长期存在。因为该方法依赖於. N8 |/ Q" o* }, j% r信号发生器的频率精确度(该频率可以非常精确的测量),所以该资料的采样方式是十分精确&U% `, D0 L j1 ^的。现代的电容ESR非常之小,以至於这个测量方法的精度也只能达到接近±10%。但不管如% u+ k&S8 q4 t4 Z* E8 Xr9 O e何,这仍然是目前最精确的在射频RF方面有效测量Q和ESR的方法。0 v" Q0 Y6 \8 X7 j, J( S+ y" E测试方式:8 t- ?: o/ f$ w" [ 频率发生器 电脑 毫伏表" Y* W) E. j( [: m9 v2 j" Y 同轴谐振器2 T6 x2 z) T) L9 Y F$ t$ I5 W! L- w2 Q5 s4 K如何理解贴片陶瓷电容器的介质强度8 h. J/ v: V# ]$ \7 { 介质强度表徵的是介质材料承受高强度电场作用而不被电击穿的能力,通常用伏特/密尔( p1 Y* u Q" Z. T3 g/ F0 l. i# F(V/mil)或伏特/釐米(V/cm)表示。" M. O- ` x, w! ]5 r当外电场强度达到某一临界值时,材料晶体点阵中的电子克服电荷恢复力的束缚并出现场( S2 l! s G. J, P" H致电子发射,产生出足够多的自由电子相互碰撞导致雪崩效应,进而导致突发击穿电流击穿介6 A$ o. r" Z9 f! t6 S C7 y# m质,使其失效。除此之外,介质失效还有另一种模式,高压负荷下产生的热量会使介质材料的+ z7 J1 ~/ A&Y0 P0 O5 J8 Zo电阻率降低到某一程度,如果在这个程度上延续足够长的时间,将会在介质最薄弱的部位上产2 O: G* E4 c2 Z3 a. i1 C: B生漏电流。这种模式与温度密切相关,介质强度随温度提高而下降。
压电陶瓷片的电容计算与瓷介电容器的容量计算是一样的,
采用平板电容器的计算公式,(注意单位)
C=ε×S/d
C—电容量(F)
ε—介质的介电系数(F/m)
S—电极面积(m2)
d—介质厚度(m)。
压电陶瓷的介质有钛酸钡、锆钛酸铅、铌镁酸铅等也可以制造瓷介电容器
瓷片电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。
电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(μF)/mju:/、纳法(nF)、皮法(pF)。其中:1法拉=1000毫法(mF),1毫法=1000微法(μF),1微法=1000纳法(nF),1纳法=1000皮法(pF)
1、容量大的电容其容量值在电容上直接标明,如10μF/16V;
2、容量小的电容其容量值在电容上用字母表示或数字表示;
字母表示法:
1m=1000μF
1P=1pF(如470P=470pF)
1P2=1.2PF
1n=1000PF;
数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数字,第三位数字表示有效数字后面零的个数,它们的单位都是pF。
如:
102表示标称容量为10×10²pF=1000pF;
104表示标称容量为10×(10^4)pF=100000pF;
470表示标称容量为47pF;
223表示标称容量为(22×(10^3))pF(即22000pF)。
在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数字乘上10的-1次方来表示容量大小。
如:229表示标称容量为22x10^(-1)pF=2.2pF。
电容器公式有两个,一个是电容器公式的比例式,另一个是决定式。
1、C=Q/U
此公式为电容器的比例式,Q为电容器所带的电荷量,U为电容器两端的电压。
2、
S表示两电极板之间的正对面积,d表示两电极板之间的距离,
是一个常数,称为介电常数,与电介质的性质有关。
电容计算公式:一个电容器如果带1库的电量时两级间的电势差是1伏,则该电容器的电容是1法,即:C=Q/U
电容大小计算公式:电容的大小不是由Q(带电量)或U(电压)决定,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离, k则是静电力常量。 而平行板电容器电容为C=εS/d.(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离。)
电容器的电势能计算公式:E=CU^2/2=QU/2
多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn。电容器对于频率高的交流电的阻碍作用就减小,即容抗小,反之电容器对频率低的交流电产生的容抗大;对于同一频率的交流电电。电容器的容量越大,容抗就越小,容量越小,容抗就越大。
串联分压比:电容越大分的电压越小;并联分流比:电容越大通过电流越大。
当t= RC时,电容电压=0.63E; 当t= 2RC时,电容电压=0.86E; 当t= 3RC时,电容电压=0.95E; 当t= 4RC时,电容电压=0.98E; 当t= 5RC时,电容电压=0.99E;
T单位S R单位欧姆 C单位F
T时刻电压:Vt=V0+(V1-V0)*[1-exp(-t/RC)] ,充放电时间:T=RC*Ln[(V1-V0)/(v1-vt)]。
1、一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U
2、但电容的大小不是由Q(带电量)或U(电压)决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离, k则是静电力常量。 而常见的平行板电容器,电容为C=εS/d.(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离。)
3、电容器的电势能计算公式:E=CU^2/2=QU/2
4、多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn
5、电容器对于频率高的交流电的阻碍作用就减小,即容抗小,反之电容器对频率低的交流电产生的容抗大;对于同一频率的交流电电.电容器的容量越大,容抗就越小,容量越小,容抗就越大
6、串联分压比:电容越大分的电压越小 并联分流比:电容越大通过电流越大
7、当t= RC时,电容电压=0.63E; 当t= 2RC时,电容电压=0.86E; 当t= 3RC时,电容电压=0.95E; 当t= 4RC时,电容电压=0.98E; 当t= 5RC时,电容电压=0.99E;
T单位S R单位欧姆 C单位F
8、T时刻电压:Vt=V0+(V1-V0)*[1-exp(-t/RC)]
容抗和电容成反比,和频率也成反比。如果容抗用XC表示,电容用C表示,频率用f表示,那么 XC=1/(2πfC) 容抗的单位是欧姆。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。
容抗公式:Xc=1/ωc 那个如果没算错的吧是等于-32+24j。这个就是复数的计算,反复变形就能算出来。
容抗: Xc(Ω)=1/2πfC 感抗: XL(Ω)=2πfL π:3.14 f:电源频率 C:电容量(F) L:电感量(H)
准确的讲电容容抗表达式Z=-jωc而并非jωc。 j是有关复数的概念,j为虚数符号,仍和实数与j相乘都为虚数。 电容器为无功元件,本身不消耗功率,在频率为ω的交流电作用下将会出现电流超前电压90度的情况,因此-jωc也准确地表示出了这种相位关系。
计算公式:
一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法拉,即:C=Q/U 。但电容的大小不是由Q(带电量)或U(电压)决定的,即电容的决定式为:C=εS/4πkd 。
其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。
定义式:
电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C
多电容器并联计算公式:C=C1+C2+C3+…+Cn
多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn
三电容器串联:C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3)
扩展资料电容优点:
1、高稳定性
固体铝电解电容可以持续在高温环境中稳定工作,使用固态铝电解电容可以直接提升主板性能。同时,由于其宽温度范围的稳定阻抗,适于电源滤波。它可以有效地提供稳定充沛的电源,在超频中尤为重要。
2、寿命长
固态铝电解电容具有极长的使用寿命(使用寿命超过50年)。与液态铝电解电容相比,可以算作“长命百岁”了。它不会被击穿,也不必担心液态电解质干涸以及外泄影响主板稳定性。由于没有液态电解质诸多问题的困扰,固态铝电解电容使主板更加稳定可靠。
3、低ESR和高额定纹波电流
ESR(EquivalentSeriesResistance)指串联等效电阻,是电容非常重要的指标。ESR越低,电容充放电的速度越快,这个性能直接影响到微处理器供电电路的退藕性能,在高频电路中固态电解电容的低ESR特性的优势更加明显。
参考资料:百度百科-电容