简述压电陶瓷的结构及其特性是什么
一、压电陶瓷的结构
压电陶瓷是指把氧化物混合(氧化锆、氧化铅、氧化钛等)高温烧结、固相反应后而成的多晶体,并通过直流高压极化处理使其具有压电效应。压电陶瓷的结构是晶粒随机取向的多晶聚集体,每个晶相都是具有铁电性的晶粒,各个铁电晶粒的自发极化矢量也是混乱取向的。
二、压电陶瓷的特性
压电陶瓷具有较好的力学性能和稳定的压电性能,压电陶瓷作为一种重要的力、热、电、光敏感功能材料,已经在传感器、超声换能器、微位移器和其它电子元器件等方面得到了广泛的应用。
扩展资料
压电陶瓷的制造技术:
1、单层压电陶瓷的基本制造
单层压电陶瓷元件是只有一层压电陶瓷组成的产品,其中导电金属电极施加到两个相对侧。单层压电陶瓷元件是通过常规工艺将压电陶瓷粉末进行压制而成,如单轴压制、等静压和挤压。制造单层压电元件的基本技术是使用喷雾干燥的颗粒材料压制成型体。
2、多层压电陶瓷的基本制造
多层压电陶瓷由几层压电材料构成,并与内部电极层交替。内部电极依次定位为正极和负极。所有正极连接到压电陶瓷元件一侧的一个外部电极,所有负电极连接在元件的另一侧外部电极。与单层压电陶瓷促动器相比,多层压电陶瓷促动器具有的优点是位移大。
参考资料来源:百度百科-压电陶瓷
说到能量转换,少年朋友们大都容易理解。例如,电灯把电能转化成为光能和热能;电动机带动水泵把水抽到山坡的梯田上;大坝下的水轮机带动发电机发电,是把机械能转化为电能……然而,你可知道,有一种压电陶瓷,它能使机械能和电能互相转换,为我们做许许多多有益的事情呢。
压电现象是100多年前居里兄弟研究石英时发现的。我们在上面提到的压电陶瓷,是一种先进功能陶瓷,它具有压电效应。
那么,什么是压电效应呢?
当你在点燃煤气灶或热水器时,就有一种压电陶瓷已悄悄地为你服务了一次。生产厂家在这类压电点火装置内,藏着一块压电陶瓷,当用户按下点火装置的弹簧时,传动装置就把压力施加在压电陶瓷上,使它产生很高的电压,进而将电能引向燃气的出口放电,于是,燃气就被电火花点燃了。压电陶瓷的这种功能就叫做压电效应。
压电效应的原理是,如果对压电陶瓷施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。
压电陶瓷的用途十分广泛。据粗略统计,压电陶瓷至少有20多种用途。让我们仅举几例:
近年来,煤气公司出售的一种新式的电子打火机,就是应用压电陶瓷的压电效应制成的。有些少年朋友假如在中午要自己把饭菜热一下,你一定有这方面的“经验”:只要用大拇指压一下打火机上的按钮,压电陶瓷即产生高电压,形成火花放电,从而点燃煤气。当压电陶瓷把机械能转换成电能放电时,陶瓷本身不会消耗,也几乎没有磨损,可以长久使用下去。所以,压电打火机使用方便,安全可靠,寿命长。据煤气公司销售人员介绍,一把压电打火机可使用30万次以上。以每年使用3000次计算,约可以使用100年。
地震这一自然现象,一直显得异常狰狞可畏。地球每年发生的地震大约有几百万次,其中人能感觉到的约为几万次,约占1%。20世纪以来,已发生10次破坏性大地震,其中有4次发生在中国。
大地震一旦发生,对人类造成的灾难是毁灭性的,因此,地震预报十分重要。由于压电陶瓷的压电效应非常灵敏,能精确地测出地壳内细微的变化,甚至可以检测到10多米外昆虫拍打翅膀引起的空气振动,所以,压电地震仪能精确地测出地震强度。由于压电陶瓷能测定声波的传播方向,因此,压电地震仪还能告诉人们地震的方位和距离。有压电地震仪来预报地震,人们可以放心多了。
在军事上,人们在制造穿甲弹的时候,常常把压电陶瓷安装在弹头部位。只要穿甲弹一击中坦克,炸药就会被压电陶瓷产生的高压电点燃而爆炸,把坦克炸得粉碎。
此外,通过正压电效应,把机械振动转换为交流电信号,可用来制造压电拾音器、扬声器、蜂鸣器、超声波接收探头等,其中电子音乐贺卡就是这种器件的实例。反之,通过逆压电效应,将交流电信号转换为机械振动,可用于制造超声波发射仪、压电扬声器、录像机和录音机的传动装置以及超声波清洗剂。另外,许多高转换效率、高灵敏度的声波发射和接收的压电器件正服役于超声波的水下探测仪,材料的超声波无损探伤仪,探测海洋中鱼群的规模、种类、密集程度、方位和距离,潜水艇位置的水下声纳,超声波断层摄影装置,大功率超声波碎石仪等各种仪器。
压电陶瓷具有加工成型方便、成本低、压电特性便于控制等特点,应用范围正在不断扩大,前景不可估量。
所谓极化,就是在压电陶瓷上加一强直流电场,使陶瓷中的电畴沿电场方向取向排列,又称人工极化处理,或单畴化处理。
一、极化原理
压电陶瓷的极化机理取决于其内部结构。压电陶瓷是由一颗颗小晶粒无规则地“镶嵌”而成,每个小晶粒可看为一个小单晶,其中原子(离子)都是有规则(周期性)的排列,形成晶格,晶格又由一个个重复单元—晶胞组成。 晶粒与晶粒的晶格方向不一定相同,从整体看,仍是混乱、无规则的。 为了使压电陶瓷处于能量(静电能与弹性能)最低状态,晶粒中就会出现若干小区域,每个小区域内晶胞自发极化有相同的方向,但邻近区域之间的自发极化方向则不同。自发极化方向一致的区域称为电畴,整块陶瓷包括许多电畴。
二、人工极化
在压电陶瓷上加一足够高的直流电场,并保持一定的温度和时间,迫使其电畴转向,或者说迫使其自发极化作定向排列。极化前,各晶粒内存在许多自发极化方向不同的电畴,陶瓷内的极化强度为零,极化处理时,晶粒可以形成单畴,自发极化尽量沿外场
方向排列。极化处理后,外电场为零,由于内部回复力(如极化产生的内应力的释放等)作用,各晶粒自发极化只能在一定程度上按原外电场方向取向,陶瓷内的极化强度不再为零,这种极化强度,称为剩余极化强度。
三、极化的三要素
极化电场、极化温度和极化时间,简称极化三要素。
四、极化方法
1)油浴极化法:油浴极化法是以甲基硅油等为绝缘媒质,在一定极化电场、温度和时间条件
下对制品进行极化的方法
2)空气极化法:空气极化法是以空气为绝缘媒质,以一定的极化条件对制品进行极化的方法。
3)空气高温极化方法:空气高温极化方法是以空气为绝缘媒质,极化温度从居里温度以上(高于TC10-20℃)逐步降至100℃以下,相应的极化电场从较弱(约30V/mm)逐步增加到较强(约300V/mm),对制品进行极化的方法,又称高温极化法或热极化法。
总的来说,这在普通人眼中确实是非常复杂的一个过程,但是在化学领域确更像是基本的常识,研究化学的朋友,可能就会非常明白其中的原理,而对于小白,你也不必太过于紧张或许焦虑,可以参照上面的文字说明,细细研究其中的科学道理,如果你有一定的化学基础,相信会很快理解。当然,身边要是有一个学理科出身的朋友,那么虚心向他学习,或许也是一种捷径。
自发现压电性能以来,压电学己成为晶体物理学的一个重要分支。直到1944年,人们对“压电陶瓷”这个术语仍不理解。大约在1940年以前,只知道有两类铁电体,一类是罗息盐与某些关系密切的酒石酸盐;一类是磷酸二氢钾和它的同晶型物。前者是一种在高温下具有压电性的晶体,在技术上具有使用价值,但是它有容易潮解的缺点;后者要在极低的温度(低于148℃)下才具有压电性,因此工程上应用价值不大。二次大战中,1942年到1945年期间,美国的韦纳等人、苏联的伍尔和戈德曼、日本的小川分别发现钛酸钡(BaTiO3)具有异常高的介电常数。此后不久,有人发现BaTi03具有压电性。BaTiO3陶瓷的发现是压电陶瓷材料的一个飞跃。在此以前,压电材料只是压电单晶材料。从此以后,压电材料有了两大类:压电单晶和压电陶瓷。
1947年,美国Roberts在BaTiO3陶瓷上,施加高压进行极化处理,获得了压电陶瓷的压电性,同年,美国出现了用BaTi03陶瓷制造的留声机用拾音器。由于BaTiO3压电陶瓷材料和石英晶体、罗息盐压电单晶相比,具有制备容易,且可制成任意形状和任意极化方向的产品等优点,随后,日本积极开展利用BaTiO3压电陶瓷制作超声换能器、高频换能器、压力传感器、滤波器、谐振器等各种压电器件应用研究,这种研究一直进行到20世纪50年代中期。虽然如此,BaTiO3陶瓷也有缺点,即它的压电性比罗息盐弱,而且压电性随温度和时间变化又比石英晶体大。为了提高这些方面的性能,有人对BaTi03陶瓷进行了改性试验。通过改性试验除了获得一些改良型的BaTi03陶瓷材料外,还发现了许多与BaTiO3有类似结构的AB03型铁电体或反铁电体。这些实验结果为以后发现新压电材料打下了良好的基础。1954年美国B.贾菲等人发现了压电PbZr03一PbTiO3(PZT)固溶体系统。这一系统材料具有比BaTi03更为优越的性能。在此系统中,各种材料的居里点都比BaTi03高,并存在着与温度无关的准同型相界(MPB)。准同型相界附近的组成,其机电耦合系数、机械品质因数都比BaTi03的大,温度稳定性和时间稳定性都比BaTiO3的好。且经过改性以后,它的压电性能还能提高。由于PZT具有良好的压电性,使它一出现就在压电应用领域逐步取代了BaTiO3的地位。PZT系压电陶瓷的出现对压电陶瓷来说,是一件划时代的大事,它使许多在BaTi03时代不能制作的器件成为可能,并且以后又从它派生出一系列新的压电陶瓷材料。1965年,日本根据斯摩棱斯基法则,在PZT的基础上添加复合钙钛矿型结晶结构的第三成分——铌镁酸铅(Pb(Mg1/3Nb2/3)O3,研制成三元系压电陶瓷材料PCM。这种三元系压电陶瓷材料比PZT陶瓷更易于烧结,而PbO挥发极少,其相界由PZT的点扩展为线,因而其可供选择的组成范围更广,具有比PZT更为优越的性能。故自PCM问世以后,以诸如Pb(Mgl/3Sb2/3)03、Pb(Col,3Nb2,3)03等不同复合钙钛矿型化合物为第三成分及第四成分的三元系、四元系压电陶瓷材料陆续出现122,231。
20世纪70年代中期,Newhnma等人以及他们的合作者提出了柱状PZT
陶瓷周期排列的1.3型压电复合材料的理论模型,分析了其中的横向结构模,
对压电陶瓷棒或压电陶瓷纤维在聚合物基体中的排布问题进行了大量的理论和
实验研究工作,测试了不同陶瓷体积含量压电复合材料的电学特性,并将压电
复合材料应用于水声探测器中。
1988年,清华大学柴京鹤等人对PZT压电陶瓷的低温烧结进行了研究,
他们通过添加少量低熔玻璃以达到降低烧结温度的目的。他们对陶瓷显微结
构、烧结机理和添加剂的作用进行了讨论,所研制的低温烧结瓷料已用于制备
独石压电陶瓷变压器,其空载交流升压比可高达9000以上【24J。
90年代中期,江苏陶瓷研究所的诸爱珍对PZT压电陶瓷的掺杂改性着重作了一些研究和探讨,通过实验总结出等价离子和不等价离子置换Pb2+引起材
料性能改变的一般规律,其中不等价离子包括“硬性’’添加物和“软性’’添加物,以及其它一些添加物。同时实验还表明,单独加入一种添加物往往不能满足性能的要求。为了取长补短,常常用两种或两种以上添加物同时加入,以获得理想的材料性能。
作为PZT的一个基本组成成分PbTi03虽被发现甚早,但由于其烧结困难等制造工艺上原因,长期内不能实际应用。在研究开发PZT之后,对PbTiO3进行了取代、固溶等改进型实验工作,使PbTi03陶瓷逐步趋向实用化。以上所述均属钙钛矿型材料。在研究开发钙钛矿型压电陶瓷材料的同时,也对非钙钛矿型压电陶瓷材料如焦绿石型、铋层状结构、钨青铜型等压电陶瓷材料如进行了探索与研究。这些材料都有潜在的实用价值,其中有些材料已被应用。
我国对压电陶瓷材料的研究开始于五十年代末期,比国外晚了十年左右。经过几十年的努力,我国的压电陶瓷有了很大发展。21世纪初叶,低温压电陶瓷的改进对于压电陶瓷广泛用于电子技术领域起了巨大的推动作用。然而,由于压电陶瓷硬度高、脆性大、难于加工。因此结构复杂的压电陶瓷体的制造一直是一大难题。清华大学材料系新型陶瓷与精细工艺国家重点实验室GuoDongt利用凝胶注模成型(gelcasting)制备PZT压电陶瓷,解决了压电陶瓷制备中亟待解决的问题。同时低温烧结压电陶瓷也抑制了烧结渗银过程中银离子向陶瓷内部进行扩散。我们知道,陶瓷属于绝缘介质,只有经过极化后的陶瓷才有压电性。但是陶瓷不能象金属那样被直接极化,必须先被金属化。LiQuan lut271利用低温烧结渗银法、化学沉银法,这两种方法解决了陶瓷的极化问题。另一个降低烧结温度的方法基于超细粉体的制备。在保证压电陶瓷材料良好的压电性能的前提下,从能源和环保方面考虑,人们把目光放在了烧结的最初阶段超细粉体的制备。粉体越精细、均匀性越好、表面活性越高、越有利于烧结过程,从而降低烧结温度。目前,关于粉体制备技术有:水热法、solgel、化学共沉淀法等。惠春利用水热法合成粒径小、表面活性大的PZT结晶粉体。实验证明,这种PZT粉体的氧化铅挥发温度为924.71℃。而粒径间的反应温度为911.26℃,从而避免了氧化铅的挥发。Zhao Ming leit以solgel工艺制备的粉料所制出的(Bi0.151sNao.15)1-xBaxTiO3压电陶瓷不仅压电性能得到了较大的提高,其qb(Bi0.15Na0.15)0.94Ba0.06TiO3系陶瓷具有该系列最大的压电常数,d33=173x10-12 c/N。与传统工艺相比,d33提高了近40%。而且,在一定范围内,随Ba含量的增加,材料的剩余极化Pr和矫顽场Ec逐渐减小,退极化温度逐渐降低。最近,清华大学材料科学与工程系陶瓷国家重点实验室利用放电等离子法(SPS)成功合成晶粒尺寸为纳米级的高密度(>90%)钛酸钡BaTiO3纳米晶。放电等离子法(SPS)是一种快速烧结方法,与传统的烧结方法相比,SPS烧结保温时间短、烧结后的致密度高、能显著抑制晶粒在烧结后期长大。