陶瓷易碎的原因是什么?
科学家告诉我们,组成物体的晶体,如果排列不规则,就很容易碎。如果排列得有规则,那么物体性能优良、抗温抗压本领就强。普通的陶瓷容易碎,就是因为它里面的晶体排列得不规则。人们现在用一种新的技术,可以把陶瓷里面的晶体重新排列,让它们变得非常有规则,这样生产出来的新陶瓷可坚硬呢,甚至比钢铁还要坚硬。所以,用这种新型陶瓷制成的发动机,是很牢固的。
氧化铝陶瓷的加工硬度:AL203主要有α、β、γ三种结晶形态,其中α-AL203结晶形态中最稳定,1300℃时I3和γ结晶几乎完全转变为α结晶。在α-AL203结晶形态中铝离子与氧离子形成的原子键多为共价键、离子键或是它们的混合键,因此原子间的结合能很高且具有很强的方向性,其具体表现为材料脆性大、塑性变形小、易产生裂纹;其硬度相当于碳化物硬质合金的硬度,比钢高好几倍,通常高纯度氧化铝陶瓷密度可达3980(Kg-m4),抗拉强度达260(MPa),弹性模量在350-400(GPa)之间,抗压强度为2930(MPa),特别是其硬度可达99HRA。99氧化铝陶瓷强度、硬度有所降低,根据我们对实验样件的测定,其常温下硬度也达到70HRA。
氧化铝陶瓷的加工脆性:通常情况下氧化铝陶瓷的显微组织为等轴晶粒,是由离子键或共价键所组成的多晶结构,因此断裂韧性较低,在外部载荷的作用下,应力就会使陶瓷表面产生细微的裂纹,而裂纹则会快速扩展而出现脆性断裂,因此在氧化铝陶瓷切削过程中,经常会出现崩豁现象,即在陶瓷表面出现崩裂的小豁口。出现崩豁现象的原因是:(1)材料被切除部分和已加工表面最终分离是通过拉伸破坏引起,这不是正常切削的结果。(2)崩碎切削变形带来的龟裂一般是顺着工件表面一直往下开裂的,此时,由于切削拉应力将切削和相粘结的工件基体一起剥落而形成崩豁现象。需注意的是拉应力越大,造成的崩豁现象就越严重,可能会导致整个工件的浪费。
氧化铝陶瓷含量 ≥92%
密度 ≥3.6 g/cm3
洛氏硬度 ≥80 HRA
抗压强度 ≥850 Mpa
断裂韧性KΙC ≥4.8MPa·m1/2
抗弯强度 ≥290MPa
导热系数 20W/m.K
陶瓷给人的印象总是十分脆弱的:一只瓷碗,掉在地上,就会“粉身碎骨”。
近年来,科学家们在对陶瓷进行悉心研究后发现,它之所以如此脆弱,主要依赖于两个原因:
第一,由于陶器的烧成温度比较低,通常为800℃~1000℃,因此气孔率比较高。在陶器碎片的断面上,不难看到许多小孔洞,且组成陶器的颗粒也比较粗大。陶瓷的烧成温度虽然要比陶器高得多(通常为1200℃~1400℃),组成的结构也要比陶器细密,用肉眼可能看不出有什么细微的缺陷,但是,如果你通过显微镜进行观察,在瓷器碎片的断面上,就可以看到有许许多多细微的伤痕、裂纹、气孔和夹杂物。要是你把瓷器碎片放在倍数更大的电子显微镜下,那么,你将会发现陶瓷在晶体结构方面的缺陷,例如空位、位错等。而所有这些细微的裂纹、气孔、夹杂物、晶体缺陷和表面伤痕,都可能成为陶瓷“碎骨”的发源地。
第二,由于陶瓷属于脆性材料,一旦出现裂纹,它不像金属那样具有塑性变形的能力。在热冲击的条件下,由于陶瓷的导热性较差,热膨胀系数大,热应力由此增加,因此,裂纹的扩展速度更会进一步加剧。在日常生活中,如果我们用沙锅炖(煮)食物,只能用文火慢慢加温,要是一开始就用猛火急烧,就会出现沙锅炸裂事故。即使是烧好后,也不能急于用冷水去冷却。
大多数陶瓷材料缺乏塑性变形能力和韧性,极限应变小于0.1%~0.2%,在外力的作用下呈现脆性,并且抗冲击、抗热冲击能力也很差.脆件断裂往往导致了材料被破坏。一般的陶瓷材料在室温下塑性为零,这是因为大多数陶瓷材料晶体结构复杂、滑移系统少,位错生成能高,而且位错的可动性差。
陶瓷材料:
陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。
陶瓷在人类发展史上作出了巨大的贡献。不过,它给人的印象总是很脆的。比如,一只瓷碗掉在地上,就会“粉身碎骨”。原来,科学家们在对陶瓷进行研究后发现,陶瓷里面往往存在着一些细微裂纹,当它受到诸如撞击、敲打等外力作用时,这些细微裂纹便会不断扩展,汇集起来,变成粗大的裂纹,以致最后“粉身碎骨”。如果不让陶瓷中的细微裂纹扩展开来,就可以制成一种打不碎的陶瓷了。有人把这种新产品称为韧性陶瓷,也有人称它为陶瓷钢。
缺点:棱角不太分明,表壳或表带形状基本上都是圆鼓隆冬的陶瓷材质容易碎裂,比较怕摔和怕磕碰。表带节之间缝隙过大,尤其是银钻系列的,它的表带和表壳连接处(第一节)缝隙特大,在佩带者手腕比较细的情况下,尤为明显。这样的话,一则不美观,二则也容易进去脏东西。