β氮化硅理论密度
氮化硅的理论密度为3100±10kg/m3,实际测得α-Si3N4的真比重为3184kg/m3,β-Si3N4的真比重为3187kg/m3。氮化硅陶瓷的体积密度因工艺而变化较大,一般为理论密度的80%以上,大约在2200~3200kg/m3之间,气孔率的高低是密度不同的主要原因,反应烧结氮化硅的气孔率一般在20%左右,密度是2200~2600kg/m3,而热压氮化硅气孔率在5%以下,密度达3000~3200kg/m3,与用途相近的其他材料比较,不仅密度低于所有高温合金,而且在高温结构陶瓷中也是密度较低的一种
氮化硅的强度很高,尤其是热压氮化硅,是世界上最坚硬的物质之一。它极耐高温,强度一直可以维持到1200℃的高温而不下降,受热后不会熔成融体,一直到1900℃才会分解,并有惊人的耐化学腐蚀性能,能耐几乎所有的无机酸和30%以下的烧碱溶液,也能耐很多有机酸的腐蚀;同时又是一种高性能电绝缘材料。
氮化硅 - 性质 化学式Si3N4。白色粉状晶体熔点1900℃,密度3.44克/厘米(20℃);有两种变体:α型为六方密堆积结构;β型为似晶石结构。氮化硅有杂质或过量硅时呈灰色。
氮化硅与水几乎不发生作用;在浓强酸溶液中缓慢水解生成铵盐和二氧化硅;易溶于氢氟酸,与稀酸不起作用。浓强碱溶液能缓慢腐蚀氮化硅,熔融的强碱能很快使氮化硅转变为硅酸盐和氨。氮化硅在 600℃以上能使过渡金属(见过渡元素)氧化物、氧化铅、氧化锌和二氧化锡等还原,并放出氧化氮和二氧化氮。1285℃ 时氮化硅与二氮化三钙Ca3N2发生以下反应:
Ca3N2+Si3N4─→3CaSiN2
氮化硅的制法有以下几种: 在1300~1400℃时将粉状硅与氮气反应; 在1500℃时将纯硅与氨作用;
在含少量氢气的氮气中灼烧二氧化硅和碳的混合物将SiCl4的氨解产物Si(NH2)4完全热分解。氮化硅可用作催化剂载体、耐高温材料、涂层和磨料等。
氮化硅陶瓷具有高强度、耐高温的特点,在陶瓷材料中其综合力学性能最好,耐热震性能、抗氧化性能、耐磨损性能、耐蚀性能好,是热机部件用陶瓷的第一候选材料。在机械工业,氮化硅陶瓷用作轴承滚珠、滚柱、滚球座圈、工模具、新型陶瓷刀具、泵柱塞、心轴 密封材料等。
在化学工业,氮化硅陶瓷用作耐磨、耐蚀部件。如球阀、泵体、燃烧汽化器、过滤器等。
在治金工业,由于氮化硅陶瓷耐高温,摩擦系数小,具有自润滑性。对多数金属、合金溶液稳定,因此,可制作金属材料加工的工模具,如拨菅芯棒、挤压、拨丝模具,轧辊、传送辊、发热体夹具、热偶套营、金属热处理支承件、坩埚,铝液导营、铝包内衬等。
氮化硅陶资材料在电子、军事和核工业方面也有广泛应用。
1、氮化硅陶瓷粉末的物理化性能及产品的技术指标
氮化硅陶瓷是一种白灰色粉末,分子式为:SI3N4 ;
分子重量:140.3 , 密度3.2g/cm³
其化学成分:N>38-39;0<1-1.5;C<0.1;Fe<0.2。
粒度按用户要求而定。
筛网目数与粒径(μm)对照表 目数 微米(μm)=10m 目数(mesh) 微米(μm) 2 8000 100 150 3 6700 115 125 4 4750 120 120 5 4000 125 115 6 3350 130 113 7 2800 140 109 8 2360 150 106 10 1700 160 96 12 1400 170 90 14 1180 175 86 16 1000 180 80 18 880 200 75 20 830 230 62 24 700 240 61 28 600 250 58 30 550 270 53 32 500 300 48 35 425 325 45 40 380 400 38 42 355 500 25 45 325 600 23 48 300 800 18 50 270 1000 13 60 250 1340 10 65 230 2000 6.5 70 212 5000 2.6 80 180 8000 1.6 90 160 10000 1.3
000
℃以上,急剧冷却再急剧加热,也不会碎裂。
相对分子质量140.28。灰色、白色或灰白色。六方晶系。晶体呈六面体。密度3.44。硬度9~9.5,努氏硬度约为2200,显微硬度为32630MPa。熔点1900℃(加压下)。通常在常压下1900℃分解。比热容为0.71J/(g·K)。生成热为-751.57kJ/mol。热导率为16.7W/(m·K)。线膨胀系数为2.75×10-6/℃(20~1000℃)。不溶于水。溶于氢氟酸。在空气中开始氧化的温度1300~1400℃。比体积电阻,20℃时为1.4×105
·m,500℃时为4×108
·m。弹性模量为28420~46060MPa。耐压强度为490MPa(反应烧结的)。1285摄式度时与二氮化二钙反应生成二氮硅化钙,600度时使过渡金属还原,放出氮氧化物。抗弯强度为147MPa。可由硅粉在氮气中加热或卤化硅与氨反应而制得。可用作高温陶瓷原料。
氮化硅陶瓷材料具有热稳定性高、抗氧化能力强以及产品尺寸精确度高等优良性能。由于氮化硅是键强高的共价化合物,并在空气中能形成氧化物保护膜,所以还具有良好的化学稳定性,1200℃以下不被氧化,1200~1600℃生成保护膜可防止进一步氧化,并且不被铝、铅、锡、银、黄铜、镍等很多种熔融金属或合金所浸润或腐蚀,但能被镁、镍铬合金、不锈钢等熔液所腐蚀。
文档序号:26193708发布日期:2021-08-06 18:47阅读:88来源:国知局
导航: X技术>最新专利>无机化学及其化合物制造及其合成,应用技术
本发明涉及先进结构陶瓷技术领域,具体涉及一种低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及其应用。
背景技术:
氮化硅(si3n4)是一种性能优异的高温高强度结构陶瓷,具有良好的室温及高温机械性能,强度高、耐磨损、抗热震、抗化学腐蚀,能够广泛应用于航空、机械、化工等领域。特别是其β相的氮化硅具有超过170w/m.k的热导率,特别适合作为高端igbt散热基板使用。
但氮化硅(si3n4)的化合价是以强共价键为主,烧结驱动力小,传统固相烧结难以将其烧结致密。针对氮化硅(si3n4)陶瓷烧结,研究人员开发了采用添加烧结助剂,然后采用常压烧结方法、气压烧结方法和反应烧结等烧结方法实现烧结。
传统的烧结助剂为氧化钇、氧化镁、氧化铝等氧化物材料,该类烧结助剂本身的熔点高于1700℃,导致其形成液相温度很高,烧结动力不足;另外氧化钇等氧化物材料在烧结温度下,不具挥发也不会生成氮化物相,烧结后作为杂质第二相残余在晶界处,阻碍了声子振动,从而降低了热导率,不利于提升散热基板的导热性能。
技术实现要素:
有鉴于此,本发明针对现有技术存在之缺失,其目的之一是提供一种低温烧结高导热氮化硅陶瓷粉体,该陶瓷原料粉体包括氮化硅和镁硅合金组合物,其中氮化硅的质量百分比为85%<氮化硅<100%,镁硅合金组合物的质量百分比为0%<镁硅合金组合物<15%,通过镁硅合金组合物的镁在烧结过程中去除氮化硅陶瓷粉体表面的氧化层,提升陶瓷烧结活性。
优选的,镁硅合金组合物氧含量低于2.5%。
优选的,镁硅合金组合物中金属硅质量百分比为31.5%~36.5%。
优选的,氮化硅陶瓷粉体中的氮化硅的d50为0.3μm~1.0μm,镁硅合金组合物的d50为1.0μm~5μm。
本发明的目的之二,还提供了一种低温烧结高导热氮化硅陶瓷,该低温烧结高导热氮化硅陶瓷使用上述的低温烧结高导热氮化硅陶瓷粉体制备得到。
本发明的目的之三,是提供了该低温烧结高导热氮化硅陶瓷的制备方法,包括以下步骤:
a)将质量百分比为85%<氮化硅<100%的氮化硅陶瓷粉体与质量百分比为0%<镁硅合金组合物<15%的镁硅合金组合物粉体均匀混合;
b)将步骤a)混合粉体成型得到毛坯;
c)将步骤b)得到的毛坯在氮气气氛下烧结。
优选的:步骤c)中的炉内压力为0.5mpa~10mpa,烧结温度为1380℃~1520℃,保温时间1h~4h。
优选的,镁硅合金组合物氧含量低于2.5%,镁硅合金组合物中金属硅质量百分比为34.3%≤镁硅合金组合物≤35.4%。
优选的,步骤b)中成型工艺为注塑成型,其中注塑成型的高分子混合粘结剂为以聚甲醛为主的混合粘结剂,包括聚甲醛、聚丙烯和高密度聚乙烯。
本发明的目的之四,是提供了一种高导热陶瓷基板、陶瓷外观结构件、陶瓷结构件产品,该产品使用上述发明的低温烧结高导热氮化硅陶瓷材料制备,并且可以采用上述的低温烧结高导热氮化硅陶瓷的制备方法得到。
本发明的有益效果:本发明提供一种低温烧结高导热氮化硅陶瓷粉体、陶瓷制备方法及其应用,该陶瓷粉体包括氮化硅和镁硅合金组合物,其中氮化硅的质量百分比为85%<氮化硅<100%,镁硅合金组合物的质量百分比为0%<镁硅合金组合物<15%。
1)、采用镁硅合金组合物取代传统的氧化镁等氧化物烧结助剂,利用了镁硅合金低熔点特性,从而在较低的烧结温度下实现了液相烧结。
2)、通过镁硅合金组合物的镁的高活性,在烧结过程中单质镁通过氧化还原反应与氮化硅表面的氧化硅氧化层反应,夺去氧原子,从而露出新鲜的氮化硅表面参与烧结,提升陶瓷烧结活性。
3)、由于镁属于高活性金属,特别是镁粉极容易氧化生成氧化镁,因此通过限制镁硅合金中的金属硅质量百分比为31.5%~36.5%,防止了在制备合金粉体制备、混料过程中生成氧化物,从而降低活性,且通过限制合金粉体粒径及表面氧含量,进一步提升效果。且通过金属硅在氮气气氛下可以生成氮化硅陶瓷本体的特性,在此范围内限制金属硅元素,从而割裂金属镁聚集,保证金属镁去除氧化硅过程中不会大面积的晶界处聚集生成氧化镁杂质相。
4)、通过在氮气气氛下烧结,多余的镁硅烧结助剂会与氮气反应形成氮化硅、镁硅氮等物质非氧化物质,从而降低晶界处的氧化物杂质含量,从而提升氮化硅陶瓷的导热性能。
附图说明
图1为该低温烧结高导热氮化硅陶瓷的制备方法工艺流程图。
具体实施方式
下面对本发明作进一步详细描述,其中所用到原料和设备均为市售,没有特别要求。可以理解的是,此处所描述的具体实施例仅用于解释相关发明,而非对该发明的限定。
本发明提供一种低温烧结高导热氮化硅陶瓷粉体及其陶瓷、制备方法及其应用,该陶瓷原料粉体包括氮化硅和镁硅合金组合物,其中氮化硅的质量百分比为85%<氮化硅<100%,镁硅合金组合物的质量百分比为0%<镁硅合金组合物<15%,镁硅合金组合物在此比例,既能保证形成足够的液相促进烧结,也能保证不至于过多的镁硅合金组合物导致晶界处杂质过多,造成陶瓷性能彻底变差。
在本发明中氮化硅为市售的氮化硅粉体,一般来说粉体越小越好,粉体粒径大于1.0um会导致因为粉体粒径过大,导致烧结活性不足,而过小又会导致氮化硅粉体表面氧化硅过多,烧结后氧杂质过多,且粉体过细,特别是纳米粉体也难以烧结致密。在本实施例中,氮化硅陶瓷粉体中的氮化硅的d50为0.3μm~1.0μm。在本实例中优选的氮化硅粉体的α相的比例在95%~99%之间,α相的比例<95%,导致氮化硅粉体β相过高,烧结活性降低,难以烧结致密,力学、导热等性能均变差,而α相的比例>99%,作为异质晶核β相不足,导致β相晶粒尺寸难以长大,从而最终陶瓷导热性能不佳。
在本发明中镁硅合金组合物通过现有的合金研磨法、气流粉碎法或者惰性气体离心喷雾法等现有技术制备,并无特别限制。但是在本实例中上述制备方法需要准确的称量,保证镁硅合金组合物中金属硅质量百分比为31.5%~36.5%,更进一步的为34.3%≤镁硅合金组合物≤36.5%,从而通过硅调整合金活性,保证合金不会在后续的混料、成型阶段过早的氧化,造成不能低温形成液相导致烧结活性不足且晶界氧化物杂质过多,影响导热性能。且通过金属硅在氮气气氛下可以生成氮化硅陶瓷本体的特性,在此范围内限制金属硅元素,从而割裂金属镁聚集,保证金属镁去除氧化硅过程中不会大面积的晶界处聚集生成氧化镁。另外在本实例中,镁硅合金组合物的d50为1.0μm~5μm,d50<1μm会导致镁硅合金组合物粉体活性过高,粉体提前氧化,从而达不到作为低温烧结助剂的效果,而d50>5μm会导致金属镁硅烧结助剂的聚集,在晶界处形成大晶粒的氧化镁杂质相,从而降低导热率等性能。而在本实例中镁硅合金组合物氧含量低于0.1%,从而进一步减少氧的参与,不仅提升烧结活性,而且提升烧结后的陶瓷导热等性能。因此在本实例中优选的镁硅合金组合物粉体的制备方法为惰性气体离心喷雾法,然后按照d50需求再次在水或者水与其它溶剂混合的液体球磨达到所需粒径尺寸。
本发明提供的低温烧结高导热氮化硅陶瓷,是由上述的低温烧结高导热氮化硅陶瓷粉体制备得到。本发明还提供了该低温烧结高导热氮化硅陶瓷的制备方法,包括以下步骤:
a)将质量百分比为85%<氮化硅<100%的氮化硅陶瓷粉体与质量百分比为0%<镁硅合金组合物<15%的镁硅合金组合物混合;现有技术中的干法混合、湿法混合均能实现本发明,在本实施例中为了提升粉体的混合均匀性及混合过程的产生热量而镁硅合金组合物粉体氧化,优选的使用湿法球磨混合,球磨时间2h~24h。
在本制备方法中镁硅合金组合物通过现有的合金研磨法、气流粉碎法或者惰性气体离心喷雾法等现有技术制备,并无特别限制。但是在本实例中上述制备方法需要准确的称量,保证镁硅合金组合物中金属硅质量百分比31.5%~36.5%,更进一步的为34.3%≤镁硅合金组合物≤36.5%,优化调整硅合金活性,保证合金不会在后续的混料、成型阶段过早的氧化,造成不能低温形成液相导致烧结活性不足且晶界氧化物杂质过多,影响导热性能。且通过金属硅在氮气气氛下可以生成氮化硅陶瓷本体的特性,在此范围内限制金属硅元素,从而割裂金属镁聚集,保证金属镁去除氧化硅过程中不会大面积的晶界处聚集生成氧化镁。另外在本实例中,镁硅合金组合物的d50为1.0μm~5μm,d50<1μm会导致镁硅合金组合物粉体活性过高,粉体提前氧化,从而达不到作为低温烧结助剂的效果,而d50>5μm会导致金属镁硅烧结助剂的聚集,在晶界处形成大晶粒的氧化镁杂质相,从而降低导热率等性能。而在本实例中镁硅合金组合物氧含量低于0.1%,从而进一步减少氧的参与,不仅提升烧结活性,而且提升烧结后的陶瓷导热等性能。因此在本实例中优选的镁硅合金组合物粉体的制备方法为惰性气体离心喷雾,离心喷雾后根据粒径需求,再次在水或者水与其它溶剂混合的液体球磨达到所需粒径尺寸。
b)将步骤a)混合粉体成型得到毛坯;现有技术中的模压法、注塑法、流延法、注浆法和凝胶注模成型等方法均可以用于该陶瓷的成型,可以根据所需成型的形状复杂程度和成本等因素综合考虑,并无特别限制。在本实例中步骤b)中为了量产效率以及成型结构方面的因素,优选的成型工艺为先与有机物粘结剂制备得到喂料,然后注塑成型,其中注塑成型的高分子混合粘结剂为以聚甲醛为主的混合粘结剂,包括聚甲醛、聚丙烯和高密度聚乙烯。其中聚甲醛为粘结剂,聚丙烯和高密度聚乙烯为骨架剂。密炼使用密炼机密炼,密炼温度为170℃~190℃,密炼时间为1h~4h。得到的喂料注塑成型并脱脂得到毛坯;根据选用的高分子混合粘结剂不同,选用不同的脱脂工艺,石蜡基混合粘结剂和聚乙烯基混合粘结剂使用热脱脂工艺,缓慢将有机物高分子分解为有机小分子化合物从注塑件中挥发完成脱脂。而聚甲醛基混合粘结剂选用硝酸催化将聚甲醛分解为甲醛小分子化合物从而完成脱脂。在本实施中优选的注塑温度为175℃~195℃,脱脂为催化脱脂,催化脱脂温度为110℃~135℃,硝酸蒸汽速率为0.16ml/min~0.25ml/min。
c)将步骤b)得到的毛坯在氮气气氛下或者含氮气氛烧结。在烧结过程中,利用镁硅合金低熔点特性,在较低的烧结温度下融化成液相,通过液相溶解传质作用,从而在较低的烧结温度下实现烧结。另外在烧结过程单质镁通过氧化还原反应与氮化硅表面的氧化硅氧化层反应,夺去氧原子,从而露出新鲜的氮化硅表面参与烧结,提升陶瓷烧结活性。另外为了证足够的氮气渗透压力促进烧结,且防止镁硅合金过早氧化失去低温烧结意义,炉内氮气压力不能低,但氮气压力过高不仅增加成本而且导致安全隐患,在本实施例中炉内氮气气氛压力为0.5mpa~10mpa,烧结温度为1380℃~1520℃,保温时间1h~4h。
以下是本发明的实施例:
对比例1
称取中值粒径d50约为0.3um的α含量95的氮化硅2500g待用。
称取240g聚甲醛,35g聚丙烯和25g高密度聚乙烯加入密炼机中升温至170℃使其融化后将2000g分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为110mpa在135mm×95mm手机模具模腔注塑保压3s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温9h后降温完成脱脂。
将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力10mpa,以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度52.3%,使用xrd测试氮化硅α相为95%,β相为5%,三点弯曲法测试抗弯强度为56mpa,热导率为3.3w/m.k。
对比例2
称取中值粒径d50约为0.3um的α含量95的氮化硅2488g和12.5g的d50为1um的氧化镁,然后将氮化硅粉体和氧化镁粉体加入搅拌球磨机中,加入800g去离子水后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。
称取240g聚甲醛,35g聚丙烯和25g高密度聚乙烯加入密炼机中升温至170℃使其融化后将2000g分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为110mpa,在135mm×95mm手机模具模腔注塑保压3s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温9h后降温完成脱脂。
将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力10mpa,以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度53.1%,使用xrd测试氮化硅α相为95%,β相为5%,三点弯曲法测试抗弯强度为51mpa,热导率为4.1w/m.k。
实施例1
称取342.5g纯度大于99.5%镁条和纯度99.9%的硅粉157.5g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为31.5%的镁硅组合粉体,称取其中100g,加入球磨罐中,水与乙醇按1:1的比例加入50g,然后加入锆球球磨12~14h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为4.89um,采用氧分析仪测试粉体表面氧含量为0.62%。
称取中值粒径d50约为0.3um的α含量95的氮化硅2488g和12.5g的d50为4.89um的镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入600g去离子水和200g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。
称取240g聚甲醛,35g聚丙烯和25g高密度聚乙烯加入密炼机中升温至170℃使其融化后将2000g分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为110mpa,在注塑135mm×95mm模具模腔注塑保压3s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温9h后降温完成脱脂。
将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力10mpa,以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度96.6%,使用xrd测试氮化硅α相为48.1%,β相为52.9%,三点弯曲法测试抗弯强度为722mpa,热导率为52.8w/m.k。
对比例3
将实施例1经过脱脂的样品放入烧结炉内,空气气氛烧结,具体烧结工艺为:以2℃/min升温速率从室温升至1520℃,保温时间2h,得到氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度53.0%,使用xrd测试氮化硅α相为95%,β相为5%,三点弯曲法测试抗弯强度为52mpa,热导率为4.1w/m.k。由此可见,在空气下烧结,镁硅组合粉体提前氧化,不能实现低温烧结的目的。
实施例2
称取实施例1中制备的镁硅组合粉体300g,加入球磨罐中,水与乙醇按1:1的比例加入150g,然后加入锆球球磨20~22h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为2.81um,采用氧分析仪测试粉体表面氧含量为1.45%。
称取中值粒径d50约为1um的α含量99的氮化硅1280g和220g的d50为2.81um的镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入550g去离子水和200g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。
称取100g聚甲醛,10g聚丙烯和10g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在170℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为175℃,注塑压力为130mpa,在1.5寸手表模具模腔注塑保压2s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。
将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力0.5mpa,以2℃/min升温速率从室温升至1380℃,保温时间1h,得到该氮化硅陶瓷手表外壳。排水法测试该氮化硅陶瓷相对密度95.2%,使用xrd测试氮化硅α相为17.2%,β相为82.8%,三点弯曲法测试抗弯强度为695mpa,热导率为123.2w/m.k。
实施例3
称取190.5g纯度大于99.5%镁条和纯度99.9%的硅粉109.5g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为36.5%的镁硅组合粉体,称取其中100g,加入球磨罐中,水与乙醇按1:1的比例加入50g,然后加入锆球球磨52~56h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为1.02um,采用氧分析仪测试粉体表面氧含量为2.19%。
称取中值粒径d50约为0.5um的α含量98的氮化硅1425g和75g的上述镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入525g去离子水和215g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。
称取100g聚甲醛,5g聚丙烯和15g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在190℃密炼2h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为195℃,注塑压力为105mpa,在注塑135mm×95mm模具模腔注塑保压1s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。
将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力3mpa,以1.5℃/min升温速率从室温升至1480℃,保温时间2h,得到该氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度98.8%,使用xrd测试氮化硅α相为5.5%,β相为94.5%,三点弯曲法测试抗弯强度为825mpa,热导率为151.1w/m.k。
实施例4
称取197.1g纯度大于99.5%镁条和纯度99.9%的硅粉102.9g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为34.3%的镁硅组合粉体,称取其中200g,加入球磨罐中,水与乙醇按1:1的比例加入100g,然后加入锆球球磨30~32h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为2.22um,采用氧分析仪测试粉体表面氧含量为1.81%。
称取中值粒径d50约为0.5um的α含量98的氮化硅1365g和135g的上述镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入525g去离子水和215g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。
称取100g聚甲醛,5g聚丙烯和15g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在175℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为125mpa,在155mm×105mm手机模具模腔注塑保压0.5s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。
将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力5mpa,以1.5℃/min升温速率从室温升至1420℃,保温时间4h,得到该氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度99.1%,使用xrd测试氮化硅α相为3.1%,β相为96.9%,三点弯曲法测试抗弯强度为879mpa,热导率为159.1w/m.k。
实施例5
称取193.8g纯度大于99.5%镁条和纯度99.9%的硅粉106.2g,放入坩埚中,然后在ar气氛保护下加热至1100℃融化,并ar气氛保护下离心喷雾造粒得到硅含量为35.4%的镁硅组合粉体,称取其中200g,加入球磨罐中,水与乙醇按1:1的比例加入100g,然后加入锆球球磨30~32h,然后在氮气气氛下110℃~130℃烘干,并通过激光粒度测试仪测试d50为2.39um,采用氧分析仪测试粉体表面氧含量为1.87%。
称取中值粒径d50约为0.5um的α含量98的氮化硅1395g和105g的上述镁硅组合粉体,然后将氮化硅粉体和镁硅组合粉体加入搅拌球磨机中,加入525g去离子水和215g酒精后球磨搅拌6h出料在110℃~130℃烘干24h得到混合粉体待用。
称取100g聚甲醛,5g聚丙烯和15g高密度聚乙烯加入密炼机中升温至170℃使其融化后将1200g分多次加入密炼机中,然后闭合密炼机抽真空至-0.09mpa在175℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,设定注塑机炮筒温度为185℃,注塑压力为125mpa,在135mm×95mm模具模腔注塑保压0.5s得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温3h后降温完成脱脂。
将脱脂后的毛坯放入烧结炉中充入氮气气氛,保持压力5mpa,以1.5℃/min升温速率从室温升至1400℃,保温时间2h,得到该氮化硅陶瓷手机外壳。排水法测试该氮化硅陶瓷相对密度99.6%,使用xrd测试氮化硅α相为1.2%,β相为98.8%,三点弯曲法测试抗弯强度为923mpa,热导率为165.5w/m.k。
由此对比实施例1~3与实施例1比较可知,不添加烧结助剂、添加氧化镁烧结助剂以及在空气气氛烧结,在低于1520℃范围下均未实现氮化硅陶瓷烧结致密。实施例1中添加本发明的镁硅组合粉体0.5%,使得陶瓷致密度提升到96.6%,相应热导率也提升到52.8w/m.k。实施例1~5比较可知,添加镁硅组合粉体能够显著降低烧结问题并提升陶瓷导热性能,例如实施例2结果表明,添加14.7%的d50为2.81um硅组合粉体,即使在1380℃低温下,也能达到95.2%的致密度,由于大量液相传热作用,β相提升到82.8%,相应的热导率达到了123.2w/m.k。实施例4~5表明,镁硅组合粉体中硅含量在34.3%~35.4%,添加量在7%~9%之间时,能够得到的更为优异的力学合热学性能。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
完整全部详细技术资料下载
当前第1页1 2
该技术已申请专利。仅供学习研究,如用于商业用途,请联系技术所有人。
技术研发人员:周涛雒文博温兵赵立宏
技术所有人:深圳市精而美精密陶瓷科技有限公司周涛
我是此专利的发明人
上一篇:基于自然语音处理的正则意图识别方法与流程
上一篇:敏感数据检测和替换的制作方法
1、氮化硅的物理性能:
①热学性质:属高温难熔物质,无熔点,常压下1900℃左右分解,抗高压蠕变能力强,不含粘结剂的反应烧结氮化硅负荷软化点可高达1800℃;
②导热性能好;
③热膨胀系数小;
④电绝缘性能好,介电系数小,抗击穿电压高。
2、氮化硅的化学性能:
①抗氧化性:800℃以下干燥气氛中不与氧反应;
②抗熔融金属腐蚀性:氮化硅对单质金属融液(除铜外)不浸润,不受腐蚀;
③抗酸碱盐腐蚀性:易溶于氢氟酸,与稀酸不起作用。
3、氮化硅的机械性能:
①高温强度好,1200℃高温强度与室温强度相比衰减不大,另外,它的高温蠕变率很低。这些都是由强共价键本质所决定的;
②硬度高,仅次于金刚石、立方BN、B4C等少数几种超硬材料;
③摩擦系数小,有自润滑性,与加油的金属表面相似。
氮化硅陶瓷球是在非氧化气氛中高温烧结的精密陶瓷,具有高强度,高耐磨性,耐高温,耐腐蚀,耐酸、碱、可在海水中长期使用,并具有绝电绝磁的良好性能。在800℃时,强度、硬度几乎不变,其密度为3.20g/cm3,几乎是轴承钢的1/3.重量,旋转时离心力小.可以实现高速运转。
还具有自润滑性,它可以使用到无润滑介质高污染的环境中。成为陶瓷轴承,混合陶瓷球轴承的首选材质。氧化锆陶瓷球,在常温下具有高的强度和高韧性、耐磨性好、耐高温耐腐蚀、刚度高、不导磁、电绝缘。氧化锆陶瓷球在600℃时,强度、硬度几乎不变其密度为6.00g/cm3, 热膨胀率接近金属若膨胀率,可与金属接合使用。
高纯度的ZrO2原色为白色,含有杂质时呈现出黄色或灰色,氧化锆密度5.6g/cm3,熔点2715C。ZrO2资深具有良好的耐热性、绝缘性、耐腐蚀性。
通常应用的氧化锆结构陶瓷材料是TZP。材料中加入的Y2O3抑制了晶粒的长大和稳定了氧化锆的晶型转变,是所有的PSZ 或者说所有的多晶陶瓷中韧性较高的。
氧化锆陶瓷每立方厘米的密度高达5.95-6.05g/cm3之间,在四种常用于制作陶瓷球体材料(SigN4, SiC, Al2O3, ZrO2)中,氧化锆陶瓷的韧性度较高,8MPam 12以上,热膨胀系数10.5x10*/C,接近于金属的热膨胀系数,能满足与金属良好的贴合需求,但是尺寸稳定
性随温度变化较大,滚动疲劳接触失效形式为破坏性碎裂,在一些关键场合不如氮化硅材料稳定。
氧化锆陶瓷具有自润滑性,可以解决润滑介质造成的污染和添加不便耐腐蚀好,在中等酸、中等碱、海水等介质中亦可使用耐高温,氧化锆陶瓷在600C时,强度、硬度几乎不变不导磁、绝缘性,磁场中亦可使用、不导电。
更多氮化硅陶瓷球与氧化锆陶瓷球的区别,我给您推荐一个朋友,他们就在做氮化硅陶瓷球,是工厂,最大的氮化硅陶瓷球可以做到φ200毫米,你可以联系他了解下详细情况,电话182开头,中间5847,最后几位数5005,他们还是很专业的氮化硅陶瓷球企业,希望我的回答能帮助到你。
Si3N4 陶瓷是一种共价键化合物,基本结构单元为[ SiN4 ]四面体,硅原子位于四面体的中心,在其周围有四个氮原子,分别位于四面体的四个顶点,然后以每三个四面体共用一个原子的形式,在三维空间形成连续而又坚固的网络结构。氮化硅的很多性能都归结于此结构。纯Si3N4为3119,有α和β两种晶体结构,均为六角晶形,其分解温度在空气中为1800℃,在011MPa氮中为1850℃。Si3N4 热膨胀系数低、导热率高,故其耐热冲击性极佳。热压烧结的氮化硅加热到l000℃后投入冷水中也不会破裂。在不太高的温度下,Si3N4 具有较高的强度和抗冲击性,但在1200℃以上会随使用时间的增长而出现破损,使其强度降低,在1450℃以上更易出现疲劳损坏,所以Si3N4 的使用温度一般不超过1300℃。由于Si3N4 的理论密度低,比钢和工程超耐热合金钢轻得多,所以,在那些要求材料具有高强度、低密度、耐高温等性质的地方用Si3N4 陶瓷去代替合金钢是再合适不过了。
石头的密度是2.7/m3
网址 http://cmse.szu.edu.cn/jp/daolun/5.htm#z51
陶瓷的密度具有特殊的含义。如果我们说铁的密度是7.8Mg/m3,聚丙烯的密度是0.89 Mg/m3,高密度聚乙烯的密度是0.94 Mg/m3,意义是很清楚的。但当我们描述陶瓷的密度时,就必须说明是什么密度。因为陶瓷一般是由微小的颗粒烧结而成的,颗粒之间必然存在孔隙,于是就有了表观体积与真实体积之别,显然,表观体积为真实体积与材料内孔隙体积之和(这里“孔隙”的概念不是指晶格中原子排列的空隙,而是由于球形颗粒堆积时必然留下的孔隙,尺寸在微米或纳米级)。陶瓷的重量除以表观体积就得到表观密度,除以真实体积就得到真实密度。但所谓“真实”密度并不等于理论密度(r),理论密度是计算得到的晶格密度,而真实密度是用某种测定方法得到的不含孔隙的密度。孔隙体积占表观体积的百分数称为孔隙度。如果我们说某一陶瓷的孔隙度为20%,那么其表面密度就应是理论密度的80%。在实际情况中,陶瓷的密度一般低于理论密度的60%。要想提高陶瓷的密度,可采取很多措施。如使用宽分布的颗粒,让小颗粒嵌入大颗粒的缝隙中;或采用机械振动,拍打等手段。即使如此,也很难使陶瓷的表观密度达到理论密度的80%以上。要想进一步提高密度,就不能使用颗粒烧结的方法,必须采用新技术。气相渗滤法、定向氧化法就可以大大降低孔隙度,使表观密度达到95%以上
氧化物是最大的一族陶瓷材料。氧可以与几乎所有金属形成化合物,也可以与许多非金属元素化合。氧化物可分为单氧化物与复氧化物两大类。单氧化物是氧与另一种元素形成的二元化合物,而复氧化物是氧与两种以上元素形成的化合物。单氧化物是按氧原子数与另一种原子数的比例分类的。以字母A代表另一种元素,单氧化物可以有A2O,AO,A3O4,A2O3,AO2,AO3等类型。AO型中比较重要的有氧化镁(MgO)、氧化锌(ZnO)和氧化镍(NiO);AO2型中较重要的有二氧化硅(SiO2)、二氧化钛(TiO2)和二氧化锆(ZrO2);A2O3型中最重要的是三氧化二铝(Al2O3)。氧化物体系由图5-15所示。
图5-15氧化物的分类
二氧化钛(TiO2)有三种晶形:低温下稳定的锐钛(anatase)、板钛(brookite)与高温下稳定的金红石(rutile)。锐钛与板钛在400~1000°C的温度范围内会不可逆地转化为金红石。
氧化铝(Al2O3)是在铝钒土(Al2O3·2H2O)的加热过程中制得的。在不断升温的过程中,会产生一系列不同结构的氧化铝,这些结构都是不稳定的,最终都会不可逆地转化为a- Al2O3。a- Al2O3具有六方的刚玉结构,是1200°C以上唯一可用作结构材料与电子材料的稳定形式。另一个稳定结构是g- Al2O3,但只能在催化方面应用。故在本书中Al2O3特指a- Al2O3。由于O-Al键的键能高达400kcal/mol,Al2O3具有突出的物理性质,硬度是氧化物中最高的,而熔点高达2050°C。
硅酸盐是地壳中最丰富的矿物,有正式名称的硅酸盐就有几千种。大多数硅酸盐都不是人工合成的,而是直接取自矿物,用于耐火材料、砖瓦、瓷器和陶器。一般说来,硅酸盐的力学性能低于氧化铝、氧化锆等单氧化物,但在民用领域,各种硅酸盐得到了广泛的应用,也有少数作为工程陶瓷应用。我们只以堇青石和叶蜡石作为此类工程陶瓷的代表加以介绍。
堇青石(Cordierite, 2MgO·2Al2O3·5SiO2)的热胀系数极低,所以有很高的抗热冲击性能。其力学性能也不低,所以被用在发动机过滤器、火花塞、汽轮机换热器的叶轮等热敏感部位。堇青石有两种结构形式,天然存在的形式是四方晶形,人工合成的形式是六方晶形。为保证纯度与加工重复性,工程应用中都使用六方晶形的合成堇青石。
叶蜡石(Pyrophyllite)是一种层状结构的硅酸盐,化学组成为Al2(Si2O5)2(OH)2。它的用途非常广泛。由于价廉易得,不仅可以烧制成各种陶瓷,还可以机械加工,在西方被称为“魔石”。层间作用力主要是范德华力,因此材料较软,易于机械加工。热处理时,在800°C发生脱羟基反应,在1100°C时发生相转变,产生白硅石(SiO2)和铝红柱石(3Al2O3·2SiO2)的双相结构。在脱羟基和相转变过程中尺寸变化仅有2%。
铝红柱石在自然界非常罕见,主要矿藏发现于英国Mull岛,故称为Mullite。其热胀系数低于Al2O3,故具有更好的抗热冲击性,尤其是在1000°C以上的温度。工程上应用的铝红柱石都是人工合成的。最初的合成方法是将Al2O3与SiO2在1600°C下烧结,但强度与韧性都不高。采用新技术合成的新一代铝红柱石,具备了高强度和高韧性,强度达到500MPa,断裂韧性可达到2-4MPa·m1/2。铝红柱石的传统用途是熔炉中的耐火材料。工程化的铝红柱石的用途大大加宽,包括电子元件的基板、保护性涂料、发动机部件和红外透射窗等。
表5-5氧化物陶瓷的性质
性质 氧化铝
铝红柱石
尖晶石
堇青石
氧化铝/氧化锆
化学成分
Al2O3
3Al2O3·2SiO2
MgO·Al2O3
2MgO·2Al2O3
·5SiO2
20.0wt% Al2O3
75.7 wt% ZrO2
4.2 wt% Y2O3
熔点/°C
2015
1830
2135
1470
--
热胀系数/
(10-6/°C)
8.3
4.5-5.3
7.6-8.8
1.4-2.6
9
导热系数/
(W/cm·K)
0.27
0.059
0.15
--
0.035
杨氏模量/
GPa
366
150-270
240-260
139-150
260
挠曲强度/
MPa
550
500
110-245
120-245
2400
5.3.2 碳化物
一般意义上的碳化物可以分为三类:(1)离子碳化物,即碳与I,II,III族金属或镧系金属形成的化合物;(2)共价碳化物,只包括两种:碳化硅(SiC)与碳化硼(B4C);(3)间隙碳化物,包括许多与过渡元素形成的化合物,如IVa族的钛、锆,Va族的铌、钽,VIa族的铬、钼、钨,以及VIII族的铁、钴、镍等。从工程的角度看,离子碳化物可以不必考虑。因为它们在空气中极不稳定,还容易与潮分作用分解为烃类。间隙碳化物虽然数量众多,但目前有工程价值只有碳化钨与碳化钛两种。主要碳化物的性能见表5-6。
5.3.2.1 碳化硼
在工业上碳化硼不单独使用,而是以与石墨的复合材料的形式使用。碳化硼是通过氧化硼与碳在熔炉中作用生成。这种共价的陶瓷很难制成100%密度的制品,所以常用石墨粉与碳化硼混合使用,形成两者的复合材料。石墨的加入降低了碳化硼的使用性能,但目前还找不到更好的助剂。工业上的碳化硼制品一般用热压法成型,少数制品先进行烧结,再进行均匀热压。热压条件为2100°C,35MPa,30min。典型的烧结条件为2200-2250°C,30min,压力只需10Pa左右。烧结后的均匀热压条件为2000°C,200MPa和120min。热压只能加工简单形状的制品,如管、板、轴向对称的喷管等。复杂形状的制品必须先经过烧结。碳化硼能够捕捉热中子,同时释放出低能粒子。5B10原子吸收中子后的蜕变并不放出高能射线:
5B10 + 0n1 ® 3Li7 + 2He4
故其主要用途是中子吸收剂和屏蔽材料。
5.3.2.2 碳化硅
碳化硅有上百种结构,最简单的一种具有金刚石结构,每隔一个碳原子被硅取代一个。这种立方结构被称为b体,其它的六方和菱形结构合称为a体。碳化硅粉末用Acheson法生产。将电流通过SiO2与焦炭的混合物。当混合物温度升到2200°C左右时,焦炭会与SiO2作用生成SiC与CO。根据反应时间与温度的不同,还原产物可能是细粉末,也可能是团块。结团的产物则必须粉碎后使用,较细的级分可以用来烧结,较粗的级分直接用作磨料。
根据不同的用途,碳化硅可用三种方法加工。(1)将碳化硅粉末与第二相材料如树脂、金属、氮化硅、粘土等混合,然后根据第二相材料进行处理,将碳化硅粘结起来。(2)将碳化硅粉末与纯碳粉或纯硅粉混合,制成型坯。让碳与硅蒸汽反应形成碳化硅,新形成的碳化硅会将原有的碳化硅融合起来,这一过程称为自融合。如果让硅粉与氮气作用生成氮化硅,也可将碳化硅融合起来。这两种加工技术都称为反应融合。(3)用碳化硼作助剂,烧结碳化硅制品。这种方法可得到高密度的制品。以上三种方法各有优缺点。第二相融合法多用于烧蚀与耐火材料。第二材料的性质限制了材料的应用。自融合碳化硅中常含有残留的硅粉,在温度高于1400°C时会熔融流出。用火焰或真空处理可除去这些游离硅。自融合时如果使用过量的碳就会避免硅的残留。自融合碳化硅比烧结产物抗氧化能力强。烧结碳化硅只能在非氧化场合使用。由于产物中含硼与游离碳,抗氧化能力较差。
碳化硅的膜、涂层与渗透加工产物不是用碳化硅粉末制造的,而是用化学气相沉积(CVD)或化学气相渗透(CVI)法制造的。
表5-6 碳化物的性能
碳化物 密度/
Mg/m3
熔点/
°C
韧性/
(MPa·m1/2)
模量/
GPa
拉伸强度/
MPa
导热系数/
W/m·K
硬度/
kg/mm2
B4C
2.51
2450
445
155
28
2900-3100
SiC
3.1
2972
3.0
410
300
83.6
2800
TiC
4.94
3017
2500
ZrC
6.56
3532
WC
15.7
2800
2050-2150
TaC
14.5
3800
1750
5.3.3 氮化物
与金属相比,氮化物陶瓷的主要优势是耐高温性能,在1000°C以上仍能保持高强度;以及抗氧化与抗腐蚀性能。
氮化物家族中最主要的成员是氮化硅。氮化硅的粉末通过硅粉与氮气在1250-1400°C的温度下反应制得。氮化硅在陶瓷材料中的优势是抗热冲击性能,其导热系数几乎为Al2O3·TiC的两倍,热胀系数却只有Al2O3的一半,是制造陶瓷发动机的有力竞争材料。使用氮化硅的主要问题是烧结比较困难。纯氮化硅在高温下不能发生有效的体积扩散,即粒子之间很难互相粘合在一起。欲得到密实的氮化硅材料,必须使用烧结助剂。氮化硅的性能,尤其是高温性能,主要取决于烧结助剂。氮化硅最有效的烧结助剂是Al2O3、氮化铝(AlN)与二氧化硅。氮化硅材料基本上都是氮化硅与其它材料的合金,而不用纯粹的氮化硅。氮化硅材料可以用许多不同的方法加工,根据加工方法的不同分为以下几类:反应融合氮化硅、热压氮化硅、烧结(无压)氮化硅、烧结反应融合氮化硅、均匀热压氮化硅等。不同加工方法的氮化硅性能不同,见表5-7。
表5-7不同方法加工的氮化硅的性能
反应融合
热压
无压烧结
反应烧结
均匀热压
杨氏模量/GPa
120-250
310-330
260-320
280-300
310-330
挠曲强度/MPa
150-350
450-1000
600-1200
500-800
600-1200
断裂韧性/
(MPa·m1/2)
1.5-2.8
4.2-7.0
5.0-8.5
5.0-5.5
4.2-7.0
相对密度/%
77-88
99-100
95-99
93-99
99-100
热胀系数/(10-6/K)
3.0
3.2-3.3
2.8-3.5
3.0-3.5
3.0-3.5
导热系数/(W/m·°C)
1.4-3
5-10
4-5
--
22
由于在氮化硅的烧结过程中要加入Al2O3、AlN或SiO2等助剂,铝原子可能取代部分硅原子的位置,氧原子可能取代部分氮原子的位置,这样的结合体就形成了一类特殊的陶瓷—硅铝氧氮陶瓷。这种陶瓷具有Si6-zAlzOzN8-z的通式,晶格与b-Si6N8相似。这种氮化物的烧结要容易得多,但烧结过程中会有部分玻璃相形成。玻璃相限制了高温下的使用,但在较低温度下的优异性能仍使此类陶瓷有广泛的应用。
氧氮化硅从氮化硅和二氧化硅的混合物中合成。在Al2O3存在的情况下,具有一定的固体溶解性。可以用无压或压力烧结加工。氧氮化硅的性能略低于氮化硅,但由于其杨氏模量较低,热胀系数较高,在热机械方面有应用的潜力。
氮化铝具有较高的导热系数,在微电子工业中用作绝缘基板。用氮化铝粉末与密化助剂和CaO或Y2O3在1650-1800°C下在氮气氛中烧结而成。用Y2O3作烧结助剂时,会有钇铝化合物在颗粒边界形成。氮化铝的导热系数随Y2O3的含量迅速增加。这是由于当Y2O3含量很低时(<0.8wt%),钇铝化合物会在氮化铝颗粒外形成一层连续的外壳,阻止了氮化铝(导热系数50-90W/m·K)颗粒间的热传导。当钇的含量增加时,钇铝全结成较大的瘤(可达15m),氮化铝颗粒之间能够直接接触。钇含量达到 4.2wt%时,导热系数可达160W/m·K。氮化铝的机械性能不高,且在800°C以上发生氧化,所以不能作为结构材料使用。
氮化硼的电子结构与碳相似,晶体有两种变体,一种类似于石墨(六方),一种类似于金刚石(立方)。六方氮化硼较软,具有片层结构,可以热压成型。材料具有各向异性,因为层片垂直于压力方向取向,不同方向上的导热系数与导电率大不相同。可以用化学沉积法制造坩埚一类薄壁制品。立方氮化硼的密度和硬度要高得多,用六方氮化硼在高温高压下制得,类似人造金刚石的制法。可用作磨料或切削刀具。
氮化硅基体的复合材料主要用碳化硅晶须和碎片增强,目的是提高韧性和高温强度。由于碳化硅晶须的存在,阻碍了氮化硅基体的收缩,使无压烧结更为困难。因此,氮化硅复合材料只能用热压法才能得到致密的产品。在从烧结温度冷却时,由于基体与晶须的热胀系数不匹配,材料内会产生应力。碳化硅为4.4´10-6/K,而氮化硅为3.2´10-6/K。这样,纤维会处于张力状态而基体处于压缩状态。因此使基体开裂的应力就应更高。在径向上,晶须会收缩而减弱与基体的结合,这样会使裂缝偏移并会使晶须容易拔出,也造成增韧。虽然碳化硅晶须的加入使强度略有降低,但有显著的增韧作用,报道的最高断裂韧性为10MPa·m1/2。上述各类氮化物的性能见表5-8。
表5-8氮化物陶瓷的性能
硅铝氧氮
氧氮化硅
(Si2N2O)
氮化铝
(AlN)
六方氮化硼
(平行于晶片)
六方氮化硼
(垂直于晶片)
立方氮化硼
杨氏模量/GPa
300
275-280
260-350
100
20
150
挠曲强度/MPa
750-950
450-480
235-370
低
低
高
理论密度/%
2.90
3.20
2.27
2.27
3.48
热胀系数/
(10-6/K)
3.0-3.7
4.3
4.4-5.7
2-6
1-2
--
导热系数/(W/m·K)
15-22
8-10
50-170
20
33
--
5.3.5金属陶瓷
顾名思义,金属陶瓷是金属与陶瓷的结合体,实际上是一种复合材料。其分散相是陶瓷颗粒,多为碳化物,如碳化钛、碳化钨等。基体是一种金属或几种金属的混合物,如镍、钴、铬、钼等。实际上金属仅起到粘合剂的作用,将坚硬的陶瓷粒子粘合在一起。金属陶瓷家族中最著名的成员是钴粘合的碳化钨。
图5-16金属陶瓷的制备过程
碳化钨/钴的起点原料是钨的粉末,通过碳化将钨粉转化为碳化钨。然后将碳化钨粉末与钴一起球磨,一方面减小碳化钨的粒度,一方面将钴涂到陶瓷表面。涂饰好的粉末按粒度分级,取所需粒度压成型坯。型坯在真空下或氢气氛中烧结成型。所谓烧结不过是将金属熔融,把陶瓷粒子彻底“焊”在一起。图5-16是金属陶瓷的一般制备流程。
陶瓷金属比任何工具钢都硬,耐磨性能极佳。可作切削工具,可作任何软、硬表面的磨擦件。如果单纯使用陶瓷,因为其脆性,不能用作切削工具、模具或振动强烈的机器部件。而金属陶瓷中的金属提供了韧性,陶瓷提供了硬度与强度,这种复合产生了性能上的协同效应。
金属陶瓷有下列共同的特点:
模量比钢高(413-620GPa)。
密度高于钢。
压缩强度高于大多数工程材料。
硬度高于任何钢与其它合金。
拉伸强度与合金钢相当(1380MPa)。
表5-9 各种规格的金属陶瓷
用途 代码
等级
成分
硬度
(RA)
侧向断裂强度
(MPa)
WC
TiC
TaC
Co
加工属铸铁,有色金属与非金材料
C-1
粗加工
94
-
-
6
91
2000
C-2
通用加工e
92
-
2
6
92
1550
C-3
细加工
92
-
4
4
92
1520
C-4
精加工
96
-
4
93
1400
加工碳钢,合金钢与工具钢
C-5
粗加工
75
8
7
10
91
1870
C-6
通用加工
79
8
4
9
92
1650
C-7
细加工
70
12
12
6
92
1750
C-8
精加工
77
15
3
5
93
1180
耐磨件
C-9
无振动
94
-
-
6
92
1520
C-10
轻振动
92
-
-
8
91
2000
C-11
强振动
85
-
-
15
89
2200
抗冲击件
C-12
轻度
88
-
-
12
88
2500
C-13
中度
80
-
-
20
86
2600
C-14
重度
75
-
-
15
85
2750
目前市场上已有多种规格的金属陶瓷,其碳化物的种类、含量、粒度不同,金属粘合剂的种类与含量不同。表5-9列出了各种规格的成分、性能与用途。由于碳化钽比碳化钨还硬,含碳化钽的金属陶瓷更为耐磨。金属含量越低,陶瓷粒度越细(<1mm),耐磨性能越好。所有金属陶瓷都具有室内耐腐蚀性,含有镍和铬的金属陶瓷可耐化学环境的腐蚀。表中侧向断裂强度一项是机械强度的度量,该项强度越高,冲击强度越高。但作为陶瓷,抗冲击性能毕竟是有限的,比任何金属都要低。作为最坚硬的材料之一,金属陶瓷的加工性能很差,不能车,不能锯,甚至不能钻孔,只能进行电火花加工。如果同一个部件需要两件以上,最经济的办法就是加工一个烧结模具。把加工的问题放到烧结以前解决。限制金属陶瓷应用的最大障碍是价格问题。1996年价格为$44/kg。这个价格是普通工具钢的5倍。但要考虑到作为耐磨部件和切削工具,金属陶瓷的寿命是工具钢的50倍,这个价格就应该不成为问题了。
氮化硅,化学式为Si3N4,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损,为原子晶体;高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1000℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。我国及美国、日本等国家都已研制出了这种柴油机。