建材秒知道
登录
建材号 > 瓷片 > 正文

核磁共振成像术是什么样的

神勇的金毛
热心的煎饼
2023-05-10 00:47:11

核磁共振成像术是什么样的?

最佳答案
认真的嚓茶
危机的招牌
2025-06-20 22:41:25

1946年,美国加利福尼亚州斯坦福大学布劳克和麻省哈佛大学柏塞尔等人发现了核磁共振现象,并因此荣获1952年诺贝尔物理学奖金。

1971年,美国的达曼迪恩首先将核磁共振信号用于检查癌症。1977年,英国首次获得了人手腕部的磁共振剖面图。进入80年代,由于计算机技术、电子技术和超导技术的飞速发展,核磁共振成像术才日臻完善,并在临床上广为应用。1986年,我国引进了这一技术。

核磁共振成像术,是一种揭示人体“超原子结构(质子)”相互作用的“化学图像”的技术。

要了解这一技术,就需要知道什么是核磁共振现象。

我们知道,任何原子,如果它的原子核结构中,质子或中子的数目是奇数,或两者都是奇数时,这些原子的原子核,就具有带电和环绕一定方向的自旋轴自旋的特性。这样,原子核周围就存在着一个微弱的磁场。而我们可以把每个原子都看作具有一定磁矩的“磁针”。在我们人体的组织中,有不少具有这种特性的原子,例如氢、氟、钠、磷等等。医学上核磁共振技术就是利用人体内蕴藏量最大、占人体体重70%的水中氢原子核,也就是它的质子的共振成像的。

那么,人体内的氢质子在一般情况下为什么不显出磁性呢?这是因为这些质子的自旋轴排列紊乱,没有一定的方向,彼此抵消了磁矩。

如果把人体放在一个强大的外磁场里,情况就不同了。这时,体内各个自旋带电磁的质子的磁轴,就会按外磁场的方向或反向,相互平行地重新排列,磁轴顺应外磁场方向者,处于低能状态,反之为高能状态。在此基础上,再加一个与外磁场方向相互垂直的短暂的射频脉冲,激发自旋质子获得横向磁矩,并产生推进运动,部分自旋质子吸收射频脉冲的能量,跃迁为高能状态,以至脉冲暂停,散发出电磁波信号,这一系列过程,就是磁共振现象。自旋质子从发出共振信号,到完全恢复到受射频脉冲激发前的平衡状态所需的时间称为“弛豫时间”。

人体组织器官及其疾病,在磁共振过程中,不同的组织,其磁共振信号强度不同,弛豫时间也不同,从而显示不同的图像。这种图像不仅可提供清晰的解剖细节,还能提供组织器官和病灶细胞内外的物理、化学、生物和生化等方面的诊断信息。

做核磁共振检查时,要拿掉身上各种带金属的物件,平躺在检查床上,徐徐送入“小屋”即可,它不必用任何造影剂,即可显示血管等结构。核磁共振检查对人体没有损伤,可以从任何方向作切层检查,成像有高度灵活性;分辨率高,而且10~20秒种即可成像。爆破体内的石头

我们人体的一些器官,有时会发生结石这种疾病。尿路结石最为常见,包括肾结石、输尿管结石、膀胱结石和尿道结石。对于这些结石,一般都用手术切开,取出结石,这往往给病人带来痛苦,并且常发生合并症。因此,人们一直在寻找不开刀的治疗方法。

随着高科技的广泛应用,定向爆破体内的结石已经成为现实。

最新回答
鲤鱼电脑
执着的洋葱
2025-06-20 22:41:25

核磁共振,又称为磁共振成像,一种是医学影像学中的一种。核磁共振其实是一种物理现象,现在被广泛运用于物理,化学,生物和医学检查等各个领域上,核磁共振的基本原理是当人体处于一种特殊的磁场中会发生核共振并且在此期间还会吸收能量并发出特定的频率,而这种特定的频率经过专门的仪器收入,射电信号会由电子计算机处理成为一种图像,这就是大家常说的核磁共振成像。
核磁共振成像摆脱了电离辐射对人体的伤害,又有较为准确的分析力,可以多方位成像,现如今也被医学界广泛应用于临床治疗,并已经成为一种成熟临床疾病的诊断方式,而且对有些疾病来说是一个必不可少的检查方法。
核磁共振检查范围
一般来说,核磁共振可以用于检查以下疾病:首先可以检查心血管疾病,可用于心脏病,心包肿瘤和心积液等疾病的诊断,而且对神经系统病变如胎儿先天畸形和脑梗塞疾病也可以较为准确的检查出来,及时的发现早期病变。核磁共振对腹部疾病,比如肝癌,肝囊肿等疾病的诊断也较好。
核磁共振还可以检查出骨骼与关节方面的问题,对于骨内感染,肿瘤或外伤诊断以及一些细微的骨挫伤有着较高的诊断价值。虽然核磁共振和有很多好处,也可以较好地检查出一些疾病,而且正确率高,但是也不是任何人都适合做核磁共振的。
在做核磁共振之前也需要注意到以下几点问题:
1、首先是核磁共振仪器无论在不工作时都是存在着强大的磁场,对于正在检查的患者来说,核磁共振仪器会有比较大的磁场出现。
2、在进行核磁共振检查时,患者会相当于在一个非常狭小的空间内。有幽闭恐惧症的患者,其实是不建议做核磁共振。
3、对于怀孕期间的女性也应该尽量减少做核磁共振的次数,因为不确定核磁共振的磁场是否会对体内胎儿有一定的影响。
4、一些金属制品是严禁带入核磁共振检查室中,而体内有钢钉,钢板,心脏起搏器和假肢的检查者来说是严禁做核磁共振的,因为这些金属会与核磁共振本身所有的磁场有互相吸引的特性,会影响检查仪器的正常工作。

大气的河马
机灵的乌龟
2025-06-20 22:41:25
磁现象的发现
先秦时代我们的先人已经积累了许多这方面的认识,在探寻铁矿时常会遇到磁铁矿,即磁石(主要成分是四氧
化三铁)。这些发现很早就被记载下来了。《管子》的数篇中最早记载了这些发现:“山上有磁石者,其下有金铜。”
其他古籍如《山海经》中也有类似的记载。磁石的吸铁特性很早就被人发现,《吕氏春秋》九卷精通篇就有:
“慈招铁,或引之也。”那时的人称“磁”为“慈”他们把磁石吸引铁看作慈母对子女的吸引。并认为:“石是铁
的母亲,但石有慈和不慈两种,慈爱的石头能吸引他的子女,不慈的石头就不能吸引了。”
汉以前人们把磁石写做“慈石”,是慈爱石头的意思。
既然磁石能吸引铁,那么是否还可以吸引其他金属呢?我们的先民做了许多尝试,发现磁石不仅不能吸引金、
银、铜等金属,也不能吸引砖瓦之类的物品。西汉的时候人们已经认识到磁石只能吸引铁,而不能吸引其他物品。
当把两块磁铁放在一起相互靠近时,有时候互相吸引,有时候相互排斥。现在人们都知道磁体有两个极,一个
称N 极,一个称S 极。同性极相互排斥,异性极相互吸引。那时的人们并不知道这个道理,但对这个现象还是能够
察觉到的。
到了西汉,有一个名叫栾大的方士,他利用磁石的这个性质做了两个棋子般的东西,通过调整两个棋子极性的
相互位置,有时两个棋子相互吸引,有时相互排斥。栾大称其为“斗棋”。他把这个新奇的玩意献给汉武帝,并当
场演示。汉武帝惊奇不已,龙心大悦,竟封栾大为“五利将军”。栾大利用磁石的性质,制作了新奇的玩意蒙骗了
汉武帝。
地球也是一个大磁体,它的两个极分别在接近地理南极和地理北极的地方。因此地球表面的磁体,可以自由转
动时,就会因磁体同性相斥,异性相吸的性质指示南北。这个道理古人不够明白,但这类现象他们很清楚。
磁现象的应用
在传统工业中的应用:
在讲述磁性材料的磁性来源、电磁感应、磁性器件时,我们已经提到了有些磁性材料的实际应用。实际上,磁性材料已经在传统工业的各个方面得到了广泛应用。
例如,如果没有磁性材料,电气化就成为不可能,因为发电要用到发电机、输电要用到变压器、电力机械要用到电动机、电话机、收音机和电视机中要用到扬声器。众多仪器仪表都要用到磁钢线圈结构。这些都已经在讲述其它内容时说到了。
生物界和医学界的磁应用:
信鸽爱好者都知道,如果把鸽子放飞到数百公里以外,它们还会自动归巢。鸽子为什么有这么好的认家本领呢?原来,鸽子对地球的磁场很敏感,它们可以利用地球磁场的变化找到自己的家。如果在鸽子的头部绑上一块磁铁,鸽子就会迷航。如果鸽子飞过无线电发射塔,强大的电磁波干扰也会使它们迷失方向。
在医学上,利用核磁共振可以诊断人体异常组织,判断疾病,这就是我们比较熟悉的核磁共振成像技术,其基本原理如下:原子核带有正电,并进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之时进行空间分辨,就得到运动中原子核分布图像。核磁共振的特点是流动液体不产生信号称为流动效应或流动空白效应。因此血管是灰白色管状结构,而血液为无信号的黑色。这样使血管很容易软组织分开。正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的硬膜为脂肪所衬托,使脊髓显示为白色的强信号结构。核磁共振已应用于全身各系统的成像诊断。效果最佳的是颅脑,及其脊髓、心脏大血管、关节骨骼、软组织及盆腔等。对心血管疾病不但可以观察各腔室、大血管及瓣膜的解剖变化,而且可作心室分析,进行定性及半定量的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、核素及CT检查。
磁不仅可以诊断,而且能够帮助治疗疾病。磁石是古老中医的一味药材。现在,人们利用血液中不同成分的磁性差别来分离红细胞和白细胞。另外,磁场与人体经络的相互作用可以实现磁疗,在治疗多种疾病方面有独到的作用,已经有磁疗枕、磁疗腰带等应用。用磁铁作成的除铁器可以去除面粉等中可能存在的铁末,磁化水可以防止锅炉结垢,磁化种子可以在一定程度上使农作物增产。
天文、地质、考古和采矿等领域的磁应用:
我们已经知道,地球是一块巨大的磁铁,那么,它的磁性来自何处?它是自古就有的吗?它和地质状况有什么联系?宇宙中的磁场又是如何的?
至少在上我们都见过灿烂的北极光。我国自古代就有了北极光的记载。北极光实际上是太阳风中的粒子和地磁场相互作用的结果。太阳风是由太阳发出的高能带电粒子流。当它们到达地球时,与地磁场发生相互作用,就好象带电流的导线在磁场中受力一样,使得这些粒子向南北极运动和聚集,并且和地球高空的稀薄气体相碰撞,结果使气体分子受激发,从而发光。
太阳黑子是太阳上磁场活动非常剧烈的区域。太阳黑子的爆发对我们的生活会产生影响,例如使得无线电通信暂时中断等。因此,研究太阳黑子对我们有重要意义。
地磁的变化可以用来勘探矿床。由于所有物质均具有或强或弱的磁性,如果它们聚集在一起,形成矿床,那么必然对附近区域的地磁场产生干扰,使得地磁场出现异常情况。根据这一点,可以在陆地、海洋或者空中测量大地的磁性,获得地磁图,对地磁图上磁场异常的区域进行分析和进一步勘探,往往可以发现未知的矿藏或者特殊的地质构造。
不同地质年代的岩石往往具有不同的磁性。因此,可以根据岩石的磁性辅助判断地质年代的变化以及地壳变动。
很多矿藏资源都是共生的,也就是说好几种矿物质混合的一起,它们具有不同的磁性。利用这个特点,人们开发了磁选机,利用不同成分矿物质的不同磁性以及磁性强弱的差别,用磁铁吸引这些物质,那么它们所受到的吸引力就有所区别,结果可以将混在一起的不同磁性的矿物质分开,实现了磁性选矿。
军事领域的磁应用:
磁性材料在军事领域同样得到了广泛应用。例如,普通的水雷或者地雷只能在接触目标时爆炸,因此作用有限。而如果在水雷或地雷上安装磁性传感器,由于坦克或者军舰都是钢铁制造的,在它们接近(无须接触目标)时,传感器就可以探测到磁场的变化使水雷或地雷爆炸,提高了杀伤力。
在现代战争中,制空权是夺得战役胜利的关键之一。但飞机在飞行过程中很容易被敌方的雷达侦测到,从而具有较大的危险性。为了躲避敌方雷达的监测,可以在飞机表面涂一层特殊的磁性材料-吸波材料,它可以吸收雷达发射的电磁波,使得雷达电磁波很少发生反射,因此敌方雷达无法探测到雷达回波,不能发现飞机,这就使飞机达到了隐身的目的。这就是大名鼎鼎的“隐形飞机”。隐身技术是目前世界军事科研领域的一大热点。美国的F117隐形战斗机便是一个成功运用隐身技术的例子。
在美国的“星球大战”计划中,有一种新型武器“电磁武器”的开发研究。传统的火炮都是利用弹药爆炸时的瞬间膨胀产生的推力将炮弹迅速加速,推出炮膛。而电磁炮则是把炮弹放在螺线管中,给螺线管通电,那么螺线管产生的磁场对炮弹将产生巨大的推动力,将炮弹射出。这就是所谓的电磁炮。类似的还有电磁导弹等。

参考资料: