50非晶可以做多大功率
50非晶可以做15千瓦。
非晶态磁芯,是由具有铁磁性的非晶态合金制作而成的铁磁性铁芯。在以往数千年中,人类所使用的金属或合金都是晶态结构的材料,其原子在三维空间内作有序排列、形成周期性的点阵结构。而非晶态金属或合金,也叫金属玻璃,是指是熔化后的金属或合金经由某种形式非平衡过程得到的一种具有非晶态(亦称玻璃态)结构的材料,通常通过熔融状态经快速淬火而得到。
由于金属或合金凝固时原子来不及有序排列结晶,金属或合金不经过形核、长大等结晶过程,而在室温或低温保留液态原子无序排列的凝聚状态,其原子不再成长程有序、周期性和规则排列,而是处于一种长程无序排列状态,为此赋予非晶态材料不少特殊性能,例如,高强度和硬度、良好的耐腐蚀性、软磁性、因瓦特性、艾林瓦特性、超导性、耐辐射损伤等。
因此,可以广泛地应用于制造业,如用于制造刀具、弹簧、齿轮、电极、磁头、磁分离器、传感器、变压器及复合材料等。在文献中,术语“非晶”、“非晶态”、“玻璃态”和“非晶体”等交换使用。
铁磁性能是非晶合金引人注目的一个重要方面。具有铁磁性的非晶态金合金又称铁磁性金属玻璃或磁性玻璃(Glassy Alloy),它具有高的饱和磁化强度、低的矫顽力、高的磁导率以及大的磁致伸缩系数。为了叙述方便,以下均称为非晶态合金。
非晶态合金的磁损耗比其它已知的晶态合金低。非晶合金的电阻率比同类晶态合金高,且电阻率温度系数为较小的负值,因而可以大大降低材料的涡流损耗。超薄非晶合金带,其高频性能极佳,在1MHz高频下,55μm厚的非晶合金铁芯的损耗为高频铁氧体的2/5,仅为超坡莫合金的1/3。
对于非晶软磁合金,按应用磁性可将其分为高饱和磁感应强度和高磁导率非晶软磁合金两大类。按照其主要组成部分来分,则可以划分为:(1)具有高饱和磁感应强度的Fe基软磁合金;(2)具有中等饱和磁感应强度和良好软磁性能的Fe-Ni基非晶合金;(3)具有饱和磁致伸缩系数接近于零的优异软磁性能的钴基合金。
铁基非晶铁芯:在几乎所有的非晶合金铁芯中具有最高的饱和磁感应强度(145T~156T),同时具有高导磁率、低矫顽力、低损耗、低激磁电流和良好的温度稳定性和时效稳定性。主要用于替代硅钢片,作为各种形式、不同功率的工频配电变压器、中频变压器,工作频率从50Hz到10KHz;作为大功率开关电源电抗器铁芯,使用频率可达50KHz。
铁镍基非晶铁芯:中等偏低的饱和磁感应强度(075T),高导磁率,低矫顽力,耐磨耐蚀,稳定性好。常用于取代坡莫合金铁芯作为漏电开关中的零序电流互感器铁芯。
钴基非晶铁芯:在所有的非晶合金铁芯中具有最高的磁导率,同时具有中等偏低的饱和磁感应强度(065T),低矫顽力、低损耗、优异的耐磨性和耐蚀性、良好的温度稳定性和时效稳定性,耐冲击振动。主要用于取代坡莫合金铁芯和铁氧体铁芯制作高频变压器、滤波电感、磁放大器、脉冲变压器、脉冲压缩器等应用在高端领域。
无规则的外形和固定的熔点,内部结构也不存在长程有序,但在若干原子间距内的较小范围内存在结构上的有序排列——短程有序(如非晶硅a-Si)。晶体形成需要一定时间,晶体物质在熔融状态下可通过急速降温制备非晶物质。
一般的瓷片表面是釉。
釉是一层非晶态玻璃体 主要成分是氧化硅(即玻璃的主体)。
颜色釉是在这基础上加入含需要颜色显色性能的化合物,其中的金属离子产生颜色 比如铜离子显绿色 铁离子显红色等。
釉的原料通常是无机非金属矿物,它们在高温作用下形成非晶态玻璃体。
釉是覆盖在陶瓷制品表面的无色或有色的玻璃质薄层,是用矿物原料(长石、石英、滑石、高岭土等)和化工原料按一定比例配合(部分原料可先制成熔块)经过研磨制成釉浆,施于坯体表面,经一定温度煅烧而成。能增加制品的机械强度、热稳定性和电介强度,还有美化器物、便于拭洗、不被尘土腥秽侵蚀等特点。
一、原料不同
陶瓷:陶瓷的主要原料是天然粘土以及各种天然矿物。
玻璃:玻璃的主要原料是玻璃形成体、玻璃调整物和玻璃中间体,其余为辅助原料。
二、制作工序不同
陶瓷:陶瓷的制作工序包括配料、成型、干燥、焙烧等工艺。
玻璃:玻璃的制作工序包括原料预加工、配合料制备、熔制、成型以及热处理。
三、透明度不同
陶瓷:陶瓷器具的透明度较低。
玻璃:玻璃器具的透明度较高。
四、应用不同
陶瓷:陶瓷主要应用于无线电、航空、原子能、冶金、机械、化学等工业等领域。
玻璃:玻璃广泛用于建筑、日用、艺术、医疗、化学、电子、仪表、核工程等领域。
参考资料来源:百度百科-陶瓷
百度百科-玻璃
硅钢片铁芯
硅钢片是一种合金,在纯铁中加入少量的硅(一般在45%以下)形成的铁硅系合金称为硅钢。该类铁芯具有最高的饱和磁感应强度值为20000Gs;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。是软磁材料中产量和使用量最大的材料。也是电源变压器用磁性材料中用量最大的材料。特别是在低频、大功率下最为适用。常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。但高频下损耗急剧增加,一般使用频率不超过400Hz。从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。在工频下使用时,常用带材的厚度为02~035毫米;在400Hz下使用时,常选01毫米厚度为宜。厚度越薄,价格越高。
坡莫合金
坡莫合金常指铁镍系合金,镍含量在30~90%范围内。是应用非常广泛的软磁合金。通过适当的工艺,可以有效地控制磁性能,比如超过105的初始磁导率、超过106的最大磁导率、低到2‰奥斯特的矫顽力、接近1或接近0的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1μm的超薄带及各种使用形态。常用的合金有1J50、1J79、1J85等。1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3倍。做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100W以下小型较高频率变压器。1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。1J85 的初始磁导率可达十万105以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等。
非晶及纳米晶软磁合金
(Amorphous and Nanocrystalline alloys)
硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利。从磁性物理学上来说,原子不规则排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的。非晶态金属与合金是70年代问世的一个新型材料领域。它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场。
我国自从70年代开始了非晶态合金的研究及开发工作,经过“六五”、“七五”、“八五”期间的重大科技攻关项目的完成,共取得科研成果134项,国家发明奖2项,获专利16项,已有近百个合金品种。钢铁研究总院现具有4条非晶合金带材生产线、一条非晶合金元器件铁芯生产线。生产各种定型的铁基、铁镍基、钴基和纳米晶带材及铁芯,适用于逆变电源、开关电源、电源变压器、漏电保护器、电感器的铁芯元件,年产值近2000万元。“九五”正在建立千吨级铁基非晶生产线,进入国际先进水平行列。
非晶软磁合金所达到的最好单项性能水平为:
初始磁导率 μo = 14 × 104
钴基非晶最大磁导率 μm= 220 × 104
钴基非晶矫顽力 Hc = 0001 Oe
钴基非晶矩形比 Br/Bs = 0995
钴基非晶饱和磁化强度 4πMs = 18300Gs
铁基非晶电阻率 ρ= 270μΩ/cm
常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。其国家牌号及性能特点见表及图所示,为便于对比,也列出晶态合金硅钢片、坡莫合金1J79 及铁氧体的相应性能。这几类材料各有不同的特点,在不同的方面得到应用。
牌号基本成分和特征
1K101 Fe-Si-B 系快淬软磁铁基合金
1K102 Fe-Si-B-C 系快淬软磁铁基合金
1K103 Fe-Si-B-Ni 系快淬软磁铁基合金
1K104 Fe-Si-B-Ni Mo 系快淬软磁铁基合金
1K105 Fe-Si-B-Cr(及其他元素)系快淬软磁铁基合金
1K106 高频低损耗Fe-Si-B 系快淬软磁铁基合金
1K107 高频低损耗Fe-Nb-Cu-Si-B 系快淬软磁铁基纳米晶合金
1K201 高脉冲磁导率快淬软磁钴基合金
1K202 高剩磁比快淬软磁钴基合金
1K203 高磁感低损耗快淬软磁钴基合金
1K204 高频低损耗快淬软磁钴基合金
1K205 高起始磁导率快淬软磁钴基合金
1K206 淬态高磁导率软磁钴基合金
1K501 Fe-Ni-P-B 系快淬软磁铁镍基合金
1K502 Fe-Ni-V-Si-B 系快淬软磁铁镍基合金
400Hz: 硅钢铁芯 非晶铁芯
功率(W) 45 45
铁芯损耗(W) 24 13
激磁功率(VA) 61 13
总重量(g) 295 276
(1)铁基非晶合金(Fe-based amorphous alloys)
铁基非晶合金是由80%Fe及20%Si,B类金属元素所构成,它具有高饱和磁感应强度(154T),铁基非晶合金与硅钢的损耗比较 磁导率、激磁电流和铁损等各方面都优于硅钢片的特点,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电变压器可节能60-70%。铁基非晶合金的带材厚度为003mm左右,广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯, 适合于10kHz 以下频率使用
2)铁镍基、钴基非晶合金(Fe-Ni based-amorphous alloy)
铁镍基非晶合金是由40%Ni、40%Fe及20%类金属元素所构成,它具有中等饱和磁感应强度〔08T〕、较高的初始磁导率和很高的最大磁导率以及高的机械强度和优良的韧性。在中、低频率下具有低的铁损。空气中热处理不发生氧化,经磁场退火后可得到很好的矩形回线。价格比1J79便宜30-50%。铁镍基非晶合金的应用范围与中镍坡莫合金相对应, 但铁损和高的机械强度远比晶态合金优越;代替1J79,广泛用于漏电开关、精密电流互感器铁芯、磁屏蔽等。铁镍基非晶合金是国内开发最早,也是目前国内非晶合金中应用量最大的非晶品种,年产量近200吨左右空气中热处理不发生氧化铁镍基非晶合金( 1K503) 获得国家发明专利和美国专利权。
3) 铁基纳米晶合金(Nanocrystalline alloy)
铁基纳米晶合金是由铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为10-20 nm的微晶,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料或纳米晶材料。纳米晶材料具有优异的综合磁性能:高饱和磁感(12T)、高初始磁导率(8×104)、低Hc(032A/M), 高磁感下的高频损耗低(P05T/20kHz=30W/kg),电阻率为80μΩ/cm,比坡莫合金(50-60μΩ/cm)高, 经纵向或横向磁场处理,可得到高Br(09)或低Br 值(1000Gs)。是目前市场上综合性能最好的材料;适用频率范围:50Hz-100kHz,最佳频率范围:20kHz-50kHz。广泛应用于大功率开关电源、逆变电源、磁放大器、高频变压器、高频变换器、高频扼流圈铁芯、电流互感器铁芯、漏电保护开关、共模电感铁芯。
常用软磁磁芯的特点比较
1 磁粉芯、铁氧体的特点比较: MPP 磁芯:使用安匝数< 200,50Hz~1kHz, μe :125 ~ 500 ; 1 ~ 10kHz; μe :125 ~ 200; > 100kHz:μe: 10 ~ 125
HF 磁芯:使用安匝数< 500,能使用在较大的电源上,在较大的磁场下不易被饱和,能保证电感的最小直流漂移,μe :20 ~ 125
铁粉芯:使用安匝数>800, 能在高的磁化场下不被饱和, 能保证电感值最好的交直流叠加稳定性。在200kHz以内频率特性稳定;但高频损耗大,适合于10kHz以下使用。
FeSiAlF磁芯:代替铁粉芯使用,使用频率可大于8kHz。DC偏压能力介于MPP与HF之间。
铁氧体:饱和磁密低(5000Gs),DC偏压能力最小 3 硅钢、坡莫合金、非晶合金的特点比较:
硅钢和FeSiAl 材料具有高的饱和磁感应值Bs,但其有效磁导率值低,特别是在高频范围内;
坡莫合金具有高初始磁导率、低矫顽力和损耗,磁性能稳定,但Bs 不够高,频率大于20kHz时,损耗和有效磁导率不理想,价格较贵,加工和热处理复杂;
钴基非晶合金具有高的磁导率、低Hc、在宽的频率范围内有低损耗,接近于零的饱和磁致伸缩系数,对应力不敏感,但是Bs 值低,价格昂贵;
铁基非晶合金具有高Bs值、价格不高,但有效磁导率值较低。
纳米晶合金的磁导率、Hc值接近晶态高坡莫合金及钴基非晶,且饱和磁感Bs与中镍坡莫合金相当,热处理工艺简单,是一种理想的廉价高性能软磁材料;虽然纳米晶合金的Bs值低于铁基非晶和硅钢,但其在高磁感下的高频损耗远低于它们,并具有更好的耐蚀性和磁稳定性。纳米晶合金与铁氧体相比,在低于50kHz时,在具有更低损耗的基础上具有高2至3倍的工作磁感,磁芯体积可小一倍以上。