风中的战斗机
2025-07-09 04:50:17
外观损坏,则一定损坏。电解电容鼓包、漏液;瓷片电容烧黑等等。
严谨的方法应该是把电容拆下来上电容测试仪测试,也可以用替换法换上新的电容试试。对于不希望拆卸的电容,并且电容值比较大的情况下(1000uf以上),可以用万用表的百欧姆档先正接,然后立刻反接,看看万用表是否会出现短暂的负读数,然后把负读数的值和维持负读数的时间,与容量一样的新电容比较一下,如果差不多或者略小于,就是好的;如果基本没有负读数,或者负读数很小,并且非常短暂,则十有八九失效了。这个方法需要多练习几次,累计一些经验和操作的熟练度,属于土法,可以用来粗测,不能作精确判断的依据。
用上述方法测量的时候,注意多电容并联的电路,也要和多电容并联的新电容比较,并且只适用于低压的电容,超过25V的电容不适用!
电解电容的话没有一个明确的好坏标志,而是性能逐步下降,下降到一定时候,电路就会出现故障。
无聊的钢笔
2025-07-09 04:50:17
识别各瓷片电容方法如下。
一:耦合电容,耦合电容的容量一般在 01μF ~ 1μF 之间,以使用云母、 丙烯、陶瓷等损耗较小的电容音质效果较好。
二:前置放大器、分频器等,前置放大器、音频控制器、分频器上使用的电容,其容量在100pF ~ 01μF之间,而扬声器分频LC网络一般采用1μF~数10μF之间容量较大的电容,目前高档分频器中采用CBB电容居多。小容量时宜采用云母,苯乙烯 电容。而LC网络使用的电容,容量较大,应使用金属化塑料薄膜或无极性电解电容器,其中无机性电解电容如采用非蚀刻式,则更能获取极佳音质。
三:滤波电容,整流后由于滤波用的电容器容量较大,故必须使用电解电容。滤波电容用于功率放大器时,其值应为10000μF以上,用于前置放大器时,容量为1000μF左右即可。当电源滤波电路直接供给放大器工作时,其容量越大音质越好。但大容量的电容将使阻 抗从10KHz附近开始上升。这时应采取几个稍小电容并联成大电容同时也应并联几个薄膜电容,在大电容旁以抑制高频阻抗的上升。
外向的菠萝
2025-07-09 04:50:17
电容器的常见失效模式有:击穿、开路、电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上下班升等)、漏液、引线腐蚀或断裂、绝缘子破裂或表面飞弧等引起电容器失效的原因是多种多样的各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样
各种常见失效模式的主要产生机理归纳如下
1、常见的七种失效模式
(1) 引起电容器击穿的主要失效机理
① 电介质材料有疵点或缺陷,或含有导电杂质或导电粒子;
② 电介质的电老化与热老化;
③ 电介质内部的电化学反应;
④ 银离子迁移;
⑤ 电介质在电容器制造过程中受到机械损伤;
⑥ 电介质分子结构改变;
⑦ 在高湿度或低气压环境中极间飞弧;
⑧ 在机械应力作用下电介质瞬时短路
(2) 引起电容器开路的主要失效机理
① 引线部位发生“自愈“,使电极与引出线绝缘;
② 引出线与电极接触表面氧化,造成低电平开路;
③ 引出线与电极接触不良;
④ 电解电容器阳极引出箔腐蚀断裂;
⑤ 液体工作台电解质干涸或冻结;
⑥ 机械应力作用下电介质瞬时开路
(3) 引起电容器电参数恶化的主要失效机理
① 受潮或表面污染;
② 银离子迁移;
③ 自愈效应;
④ 电介质电老化与热老化;
⑤ 工作电解液挥发和变稠;
⑥ 电极腐蚀;
⑦ 湿式电解电容器中电介质腐蚀;
⑧ 杂质与有害离子的作用;
⑨ 引出线和电极的接触电阻增大
(4) 引起电容器漏液的主要原因
① 电场作用下浸渍料分解放气使壳内气压一升;
② 电容器金属外壳与密封盖焊接不佳;
③ 绝缘了与外壳或引线焊接不佳;
④ 半密封电容器机械密封不良;
⑤ 半密封电容器引线表面不够光洁;
⑥ 工作电解液腐蚀焊点
(5) 引起电容器引线腐蚀或断裂的主要原因
① 高温度环境中电场作用下产生电化学腐蚀;
② 电解液沿引线渗漏,使引线遭受化学腐蚀;
③ 引线在电容器制造过程中受到机械损伤;
④ 引线的机械强度不够
(6) 引起电容器绝缘子破裂的主要原因
① 机械损伤;
② 玻璃粉绝缘子烧结过程中残留热力过大;
③ 焊接温度过高或受热不均匀
(7) 引起绝缘子表面飞弧的主要原因
① 绝缘了表面受潮,使表面绝缘电阻下降;
② 绝缘了设计不合理
③ 绝缘了选用不当
④ 环境气压过低
电容器击穿、开路、引线断裂、绝缘了破裂等使电容器完全失去工作能力的失效属致命性失效,其余一些失效会使电容不能满足使用要求,并逐渐向致命失效过渡;
电容器在工作应力与环境应力综合作用下,工作一段时间后,会分别或同时产生某些失效模式同一失效模式有多种失效机理,同一失效机理又可产生多种失效模式失效模式与失效机理之间的关系不是一一对应的
2、电容器失效机理分析
(1)、潮湿对电参数恶化的影响
空气中湿度过高时,水膜凝聚在电容器外壳表面,可使电容器的表面绝缘电阻下降此处,对于半密封结构电容器来说,水分还可渗透到电容器介质内部,使电容器介质的绝缘电阻绝缘能力下降因此,高温、高湿环境对电容器参数恶化的影响极为显著经烘干去湿后电容器的电性能可获改善,但是水分子电解的后果是无法根除的例如:电容器工作于高温条件下,水分子在电场作用下电解为氢离子(H+)和氢氧根离子(OH-),引线根部产生电化学腐蚀即使烘干去湿,也不可能引线复原
(2)、银离子迁移的后果
无机介质电容器多半采用银电极,半密封电容器在高温条件下工作时,渗入电容器内部的水分子产生电解在阳极产生氧化反应,银离子与氢氧根离子结合生成氢氧化银在阴极产生还原反应、氢氧化银与氢离子反应生成银和水由于电极反应,阳极的银离子不断向阴极还原成不连续金属银粒,靠水膜连接成树状向阳极延伸银离子迁移不仅发生在无机介质表面,银离子还能扩散到无机介质内部,引起漏电流增大,严重时可使两个银电极之间完全短路,导致电容器击穿
银离子迁移可严重破坏正电极表面银层,引线焊点与电极表面银层之间,间隔着具有半导体性质的氧化银,使无机介质电容器的等效串联电阻增大,金属部分损耗增加,电容器的损耗角正切值显著上升
由于正电极有效面积减小,电容器的电容量会因此而下降表面绝缘电阻则因无机介质电容器两电极间介质表面上存在氧化银半导体而降低银离子迁移严重时,两电极间搭起树枝状的银桥,使电容器的绝缘电阻大幅度下降
综上所述,银离子迁移不仅会使非密封无机介质电容器电性能恶化,而且可能引起介质击穿场强下降,最后导致电容器击穿
值得一提的是:银电极低频陶瓷独石电容器由于银离子迁移而引起失效的现象比其他类型的陶瓷介质电容器严重得多,原因在于这种电容器的一次烧成工艺与多层叠片结构银电极与陶瓷介质一次烧也过程中,银参与了陶瓷介质表面的固相反应,渗入了瓷-银接触处形成界面层如果陶瓷介质不够致密,则水分渗入后,银离子迁移不仅可以在陶瓷介质表面发生,还可能穿透陶瓷介质层多层叠片结构的缝隙较多,电极位置不易精确,介质表面的留边量小,叠片层两端涂覆外电极时银浆渗入缝隙,降低了介质表面的绝缘电阻,并使电极之间的路径缩短,银离子迁移时容易产生短路现象
(3)、高湿度条件下陶瓷电容器击穿机理
半密封陶瓷电容器在高湿度环境条件下工作时,发生击穿失效是比较普遍的严重问题所发生的击穿现象大约可以分为介质击穿和表面极间飞弧击穿两类介质击穿按发生时间的早晚又可分为早期击穿与老化击穿两种早期击穿暴露了电容介质材料与生产工艺方面存在的缺陷,这些缺陷导致陶瓷介质电强度显著降低,以致于在高湿度环境中电场作用下,电容器在耐压试验过程中或工作初期,就产生电击穿老化击穿大多属于电化学击穿范畴由于陶瓷电容器银的迁移,陶瓷电容器的电解老化击穿已成为相当普遍的问题银迁移形成的导电树枝状物,使漏电流局部增大,可引起热击穿,使电容器断裂或烧毁热击穿现象多发生在管形或圆片形的小型瓷介电容器中,因为击穿时局部发热厉害,较薄的管壁或较小的瓷体容易烧毁或断裂
此外,以二氧化钛为主的陶瓷介质中,负荷条件下还可能产生二氧化钛的还原反应,使钛离子由四价变为三价陶瓷介质的老化显著降低了电容器的介电强度,可能引起电容器击穿因此,这种陶瓷电容器的电解击穿现象比不含二氧化钛的陶瓷介质电容器更加严重
银离子迁移使电容器极间边缘电场发生严重畸变,又因高湿度环境中陶瓷介质表面凝有水膜,使电容边缘表面电晕放电电压显著下降,工作条件下产生表面极间飞弧现象严重时导致电容器表面极间飞弧击穿表面击穿与电容结构、极间距离、负荷电压、保护层的疏水性与透湿性等因素有关主要就是边缘表面极间飞弧击穿,原因是介质留边量较小,在潮湿环境中工作时银离子迁移和表面水膜形成使电容器边缘表面绝缘电阻显著下降,引起电晕放电,最终导致击穿高湿度环境中尤其严重由于银离子迁移的产生与发展需要一段时间,所以在耐压试验初期,失效模式以介质击穿为主,直到试验500h以后,主要失效模式才过渡为边缘表面极间飞弧击穿
(4)、高频精密电容器的低电平失效机理
云母是一种较理想的电容器介质材料,具有很高的绝缘性能,耐高温,介质损耗小,厚度可薄达25微米云母电容器的主要优点是损耗小,频率稳定性好、分布电感小、绝缘电阻大,特别适合在高频通信电路中用做精密电容器但是,云母资源有限,难于推广使用近数十年内,有机薄膜电容器获得迅速发展,其中聚苯乙烯薄膜电容器具有损耗小、绝缘电阻大、稳定性好、介质强度高等优点精密聚苯乙烯电容器可代替云母电容器用于高频电路需要说明的是:应用于高频电路中的精密聚苯乙烯电容器,一般采用金属箔极板,以提高绝缘电阻与降低损耗
电容器的低电平失效是20世纪60年代以来出现的新问题低电平失效是指电容器在低电压工作条件下出现的电容器开路或容量下降超差等失效现象60年代以来半导体器件广泛应用,半导体电路电压比电子管电路低得多,使电容器的实际工作电压在某些电路中仅为几毫伏,引起电容器低电平失效,具体表现是电容器完全丧失电容量或部分丧失电容量对于低电平冲击,使电容器的电容量恢复正常
产生低电平失效的原因主要在于电容器引出线与电容器极板接触不良,接触电阻增大,造成电容器完全开路或电容量幅度下降
精密聚苯乙烯薄膜电容器一般采用铝箔作为极板,铜引出线与铝箔极板点焊在一起铝箔在空气中极易氧化;极板表面生成一层氧化铝半导体薄膜,在低电平条件下氧化膜层上的电压不足以把它击穿,因而铝箔间形成的间隙电容量的串联等效容量,间隙电容量愈小,串联等效容量也愈小因此,低电平容量取决于极板表面氧化铝层的厚薄,氧化铝层愈厚,低电平条件下电容器的电容量愈小此外,电容器在交流电路中工作时,其有效电容量会因接触电阻过大而下降,接触电阻很大时有效电容量可减小到开路的程度即使极板一引线间不存在导电不良的间隔层,也会产生这种后果
引起精密聚苯乙烯电容器低电平失效的具体因素归纳如下:
① 引线表面氧化或沾层太薄,以致焊接不牢;
② 引线与铝箔点焊接不良,没有消除铝箔表面点焊处的氧化铝膜层;
③ 单引线结构的焊点数过少,使出现低电平失效的概率增大;
④ 粗引线根部打扁部分接触面积虽然较大,但点焊后焊点处应力也较大,热处理或温循过程中,可能损伤接触部位,恶化接触情况;
⑤ 潮气进入电容器芯子,氧化腐蚀焊点,使接触电阻增大
引起云母电容器低电平失效的具体因素归纳如下:
① 银电极和引出铜箔之间以及铜箔和引线卡之间存在一层很薄的地腊薄膜低电平条件下,外加电压不足以击穿这层绝缘膜,产生间隙电容,并使接触电阻增大;
② 银电极和铜箔受到有害气体侵蚀,使接触电阻增大在潮湿的硫气环境中银和铜容易硫化,使极板与引线间的接触电阻上升
(5)、金属化纸介电容失效机理
金属化纸介电容器的极板是真空蒸发在电容器纸表面的金属膜
A、电参数恶化失效
“自愈”是金属化电容器的一个独特优点,但自愈过程颇为复杂,自愈虽能避免电容器立即因介质短路而击穿,但自愈部位肯定会出现金属微粒迁移与介质材料受热裂解的现象电容器纸由纤维组成,纤维素是碳水化合物类的高分子物质在高温下电容器纤维素解成游离状态的碳原子或碳离子,使自愈部位表面导电能力增加,导致电容器电阻下降、损耗增大与电容减小严重时可使电容器因电参数恶化程度超过技术条件许可范围而失效
金属化纸介电容器在低于额定工作电压的条件下工作时,自愈能量不足,电容器纸中存在的导电杂质在电场作用于下形成低阻通路,也可导致电容器绝缘电阻降低和损耗增大
电容器纸是多孔性的极性有机介质材料,极易吸收潮气电容器芯子虽浸渍处理,但如果工艺不当或浸渍不纯,或在电场作用下工作相当时间后产生浸渍老化现象,则电容器的绝缘电阻将因此降低,损耗也将因此增大
电容量超差失效产金属化纸介电容器的一种失效形式在高温条件下储存时金属化纸介电容器可能因电容量增加过多而失效,在高温条件下加电压工作时又可能因电容量减少过多而失效高温储存时半密封型金属化纸介电容器免不了吸潮,水是强极性物质,其介电常数接近浸渍电容器介电常数的20倍因此,少量潮气侵入电容器芯子,也会引起电容量显著增大烘烤去湿后电容呈会有所下降如果电容器在高温环境中工作,则水分和电场的共同作用会使金属膜电极产生电解性腐蚀,使极板有效面积减小与极板电阻增大,导致电容量大幅度下降如果引线与金属膜层接触部位产生腐蚀,则接触电阻增大,电容器的有效电容量将更进一步减小个别电容器的电容量可降到接近于开路的程度
B、引线断裂失效
金属化纸介电容器在高湿环境中工作时,电容器正端引线根部会遭到严重腐蚀,这种电解性腐蚀导致引线机械强度降低,严重时可造成引线断裂失效
(6)、铝电解电容器的失效机理
铝电解电容器正极是高纯铝,电介质是在金属表面形成的三氧化二铝膜,负极是黏稠状的电解液,工作时相当一个电解槽铝电解电容器常见失效模式有:漏液、爆炸、开路、击穿、电参数恶化等,有关失效机理分析如下
A、漏液
铝电解电容器的工作电解液泄漏是一个严重问题工作电解液略呈现酸性,漏出的工作电解液严重污染和腐蚀电容器周围的其他元器件和印刷电路板同时电解电容器内部,由于漏液而使工作电解液逐渐干涸,丧失修补阳极氧化膜介质的能力,导致电容器击穿或电参数恶化而失效
产生漏液的原因很多,主要是铝电解电容器密封不佳采用铝负极箔夹在外壳边与封口板之间的封口结构时很容易在壳边渗漏电解液采用橡胶塞密封的电容器,也可能因橡胶老化、龟裂而引起漏液此外,机械密封工艺有问题的产品也容易漏液总之,漏液与密封结构、密封材料与密封工艺有密切的关系
B、爆炸
铝电解电容器在工作电压中交流成分过大,或氧化膜介质有较多缺陷,或存在氯根、硫酸根之类有害的阴离子,以致漏电流较大时电解作用产生气体的速率较快,大部分气体用于修补阳极氧化膜,少部分氧气储存在电容器壳内工作时间愈长,漏电流愈大,壳内气体愈多,温度愈高电容器金属壳内外的气压差值将随工作电压和工作时间的增加而增大如果产品密封不佳,则将造成漏液;如果密封良好,又没有任何防爆措施,则气压增大到一定程度就会引起电容器爆炸高压大容量电容器的漏电流较大,爆炸可能性更大目前,已普遍采用防爆外壳结构,在金属外壳上部增加一道褶缝,气压高时将褶缝顶开,增大壳内容积,从而降低气压,减少爆炸危险
C、开路
铝电解电容器在高温或潮热环境中长期工作时可能出现开路失效,其原因在于阳极引出箔片遭受电化学腐蚀而断裂对于高压大容量电容器,这种失效模式较多此外,阳极引出箔片和阳极箔铆接后,未经充分平,则接触不良会使电容器出现间歇开路
铝电解电容器内采用以DMF(二甲基酰胺)为溶剂的工作电解液时,DMF溶液是氧化剂,在高温下氧化能力更强工作一段时间后可能因阳极引出箔片与焊片的铆接部位生成氧化膜而引起电容器开路如果采用超声波焊接机把引出箔片与焊点在一起,可则减少这类失效现象
D、击穿
铝电解电容器击穿是由于阳极氧化铝介质膜破裂,导致电解液直接与阳极接触而造成的氧化铝膜可能因各种材料,工艺或环境条件方面的原因而受到局部损伤在外加电场的作用下工作电解液提供的氧离子可在损伤部位重新形成氧化膜,使阳极氧化膜得以填平修复但是如果在损伤部位存在杂质离子或其他缺陷,使填平修复工作无法完善,则在阳极氧化膜上会留下微孔,甚至可能成为穿透孔,使铝电解电容器击穿
此外,随着使用和储存时间的增长,电解液中溶剂逐渐消耗和挥发,使溶液酸值上升,在储存过程中对氧化膜层发生腐蚀作用同时,由于电解液老化与干涸,在电场作用下已无法提供氧离子修补氧化膜,从而丧失了自愈作用,氧化膜一经损坏就会导致电容器击穿工艺缺陷也是铝电解电容器击穿的一个主要原因如果赋能过程中形成的阳极氧化膜不够致密与牢固,在后续的裁片、铆接工艺中又使氧化膜受到严重损伤这种阳极氧化膜难以在最后的老炼工序中修补完善,以致电容器使用过程中,漏电流很大,局部自愈已挽救不了最终击穿的命运又如铆接工艺不佳时,引出箔条上的毛剌严重剌伤氧化膜,刺伤部位漏电流很大,局部过热使电容器产生热击穿
E、电参数恶化
A、电容量下降与损耗增大
铝电解电容器的电容量在工作早期缓慢下降,这是由于负荷过程中工作电解液不断修补并增厚阳极氧化膜所致铝电解电容器在使用后期,由于电解液耗损较多、溶液变稠,电阻率因黏度增大而上升,使工作电解质的等效串联电阻增大,导致电容器损耗明显增大同时,黏度增大的电解液难于充分接触经腐蚀处理的凹凸不平铝箔表面上的氧化膜层,这样就使铝电解电容器的极板有效面积减小,引起电容量急剧下降这也是电容器使用寿命临近结束的表现
此外,如果工作电解液在低温下黏度增大过多,也会造成损耗增大与电容量急剧下降的后果硼酸一乙二醇系统工作电解液的低温性能不佳,黏度过大导致等效串联电阻激增,使损耗变大和有效电容量骤减,从而引起铝电解电容器在严寒环境中使用时失效
B、漏电流增加
漏电流增加往往导致铝电解电容器失效赋能工艺水平低,所形成的氧化膜不够致密与牢固,开片工艺落后,氧化膜损伤与沾污严重,工作电解液配方不佳,原材料纯度不高,电解液的化学性质与电化学性质难以长期稳定,铝箔纯度不高,杂质含量多……这些因素均可能造成漏电流超差失效
铝电解电容器中氯离子沾污严重,漏电流导致沾污部位氧化膜分解,造成穿孔,促使电流进一步增大此外,铝箔的杂质含量较高,一般铁杂质颗粒的尺寸大于阳极氧化膜的厚度,使电流易于传导铜与硅杂质的存在影响铝氧化物向晶态结构转变铜和铝还可在电解质内组成微电池,使铝箔遭到腐蚀破坏总之,铝箔中金属杂质的存在,会使铝电解电容器漏电流增大,从而缩短电容器的寿命
3、提高电容器可靠性的措施
对材料、结构和制造工艺进行改进说明
1、电极材料的改进
陶瓷电容器一直使用银电极银离子迁移和由此而引起含钛陶瓷介质的加速老化是导致陶瓷电容器失效的主要原因有的厂家生产陶瓷电容器已不用银电极,而改用镍电极,在陶瓷基片上采用化学镀镍工艺由于镍的化学稳定性比银好,电迁移率低,提高了陶瓷电容器的性能和可靠性
国产云母电容器的电极材料也是银,同样存在银离子迁移现象日本海缆通信系统中用的云母器,它的电极材料及电极引线间的连接均采用金,这就保证了云母电容器优良的性能和高可靠性
镀金云母电容器与镀银云母电容器相比较:电容温度系数,前者约为后者的1/2,且偏差也小;湿度对容量的影响,前者比后者小一个数量级,且是可逆的;损耗角正切值,前者比后者小个数量级;在电压负荷下电容量相对变化率,前者约为后者的1/5~1/10据推算,镀金云母电容器工作20年的电容量变化率≤±01%
改进电极材料的另一个例子是金属化纸介电容器金属化纸介电容器都采用锌蒸发在电容器纸上形成的金属层作为电极锌膜在空气中易氧化,生成半导体性质的氧化锌,而且会继续向底层氧化,造成板极电阻的增加和电容器损耗的增大此外,锌金属化膜在潮湿环境下易腐蚀锌金属化膜的另一个缺点是自愈所需要的能量较大,而且电容器经击穿自愈后其绝缘电阻值较低为了提高金属化纸介电容器的性能和可靠性,已用铝金属化层来代替锌金属化层大气中在铝膜的表面会生成一层薄而坚固的氧化氯膜使铝膜不再继续氧化同时氧化氯膜对潮气抗腐蚀性能好另外铝金属化层自愈性能好,铝电极可以在介质上残存的微量潮气和低电压作用下产生电化学反应,生成氧化铝介质膜,经过一段时间,电容器的绝缘电阻得到恢复此外,铝的比电导较锌大,这就减小了板极电阻和电容器的损耗因此,铝在金属化电容器的生产中取代锌做电极改善了电容器的性能,提高了电容器的可靠性
2、工作电解质的改进
铝电解电容器工作电解质为硼酸一乙醇系统,其工作温度范围为+85~—40℃在低温下,由于乙二醇中的羟基彼此以氢键联合,出现聚合物,以致工作电解液变稠冻结,电阻率急剧增大,电容量下降和损耗角正切值增大,使电容器的性能恶化近来普遍采用的以DMF为溶剂的工作电解液,在较宽的温度范围内(-55~+85℃)电性能优良
为了解决液体钽电解电容器漏液问题,除了在密封结构上采取措施外,采用凝胶状电解质,因为凝胶状电解质黏度大,不容易从微小的缝隙中漏出
3、电介质材料的改进
电介质材料是决定电容器性能和可靠性的关键材料以往生产的聚苯乙烯电容器,其电介质是采用厚度为20μm的聚苯乙烯单层薄膜,由于薄膜的厚度不均、有针孔、有导电杂质和微粒先进原因,制成的电容器就存在着某些陷患,在外部各种环境和电应力作用下,这些缺陷就会逐渐暴露出来,导致电容器的击穿、开路或电参数超差失效为了提高和产品的性能和可靠性电容器的电介质由原来单层20μm厚薄膜改进为双层10μm薄膜这样电介质的厚度仍为20μm,电容器的体积不变,但产品的质量却提高了因为双层薄膜可以互相掩盖薄膜中的缺陷和疵点,这就使得电容器的耐压和可靠性得到了提高
又如,以银做电极的独石低频瓷介电容器,由于银电极和瓷料在900℃下一次烧成时瓷料欠烧不能获得致密的陶瓷介质,存在较大的气孔率;此外银电极常用的助熔剂氧化钡会渗透到瓷体内部,在高温下依靠氧化钡和银之间良好的浸润“互熔”能力,使电极及介质内部出现热扩散现象,即宏观上看到的“瓷吸银”现象银伴随着氧化钡进入瓷体中去后,大大减薄了介质的有效厚度,引起产品绝缘电阻的减少和可靠性的降低为了提高独石电容器的可靠性,改用了银—钯电极代替通常含有的氧化钡电极,并且在资料配方中添加了1%的5#玻璃粉消除了在高温下一次烧结时金属电极向瓷介质层的热扩散现象,能促使瓷料烧结致密化使得产品的性能和可靠性有较大提高,与原工艺和介质材料相比较,电容器的可靠性提高了1~2个数量级
4、结构的改进
上面已论述了聚苯乙烯电容器的低电平失效导致低电平不时通时不通的原因是其引线和板有焊接不好而引起的原来的引线结构是用较粗的单引线,与铝箔厚度比较尺寸相差悬殊,因此点焊质量不高后改用细引线,并将冲压加工改进为辗轧加工这样即可减少加式过程中产生毛刺,点焊质量也高此外,经过分析研究,从单引线结构较细的Φ02mm打扁引线,在卷芯的芯轴孔中间位置插入Φ08mm的绝缘线,两端插入预先打有凹槽的Φ08mm浸锡引线作为加固引线,经热处理聚合固定用双引线结构后,聚苯乙烯电容器低电平失效的概率由万分之五减少到四百万分之一
细双引线加固引线结构的电容器,由于附加了较粗的Φ08mm外部连接加固引线,并且在插入芯子内的一端上有一个凹槽,保证了引线的稳固性,所以提高了电容器外部连接的强度,能耐振,不易折断同时,在两根加固引线间有一段相同直径的绝缘线,这不仅可以防止两极间可能发生的偶然击穿,而且还能使电容器聚合后变形小,使芯子内介质薄膜的应力均匀,这就改善了电容量的稳定性
长期以来,铝电解电容器的爆炸是令人生畏的,CV乘积大的电容器爆炸的可能性更大,而且破坏性也大为了提高铝电解电容器的可靠性,提高整机的可靠性和安全性,国内已经度制了有防爆结构的铝电解电容器当电容器内部气压加到一定程度时,防爆阀释放气体而防止爆炸
5、工艺方面的改进
为了提高铝电解电容器的性能和寿命,就必须获得性能优良、结构致密、缺陷少和耐酸碱腐蚀的电介质氧化氯薄膜传统的铝电解电容器赋能工艺是采用硼酸一乙二醇系统赋能液,虽然赋能后获得的氧化膜介电性能良好,但其氧化膜抗水合能力和耐酸碱腐蚀性能较差,因而铝电解电容器的性能和可靠性都差采用已二酸形成工艺,由于已二酸在电解液中是水的表面活性物质,其羰基具有较强的电负性,极易吸附到阳极箔上,阻止阳极氧化时的晶胞生长,迫使放电离子产生新的晶核,生成致密的氧化膜氧化膜的疵点、空洞、裂纹和缝隙都较少,无论是在常温还是在高温条件下,产品的漏电流都比较小,延长了产品的平均寿命,提高了可靠性
为了解决云母电容器低电平失效,即解决引出线和电极接触不良问题,将原来用铜箔接触的引出线改为焊接工艺引出,能基本消除低电平不通的失效模式电极和引线之间的焊接方法有两种:全焊接法和点焊法全焊接法是指云母片上银电极和引出线之间,引出线和引线卡子之间全部、焊接起来方法是把引出线铜箔改为热浸铜箔,芯组装配方法和原来一样芯组打好卡子之后,通过施加温度和压力,一道工序把电极银层和引出线之间、引出线和引出卡子之间,全部焊接起来
美国生产高可靠云母电容器采用点焊法即云母片上电极和引出线连接采用点焊,点焊后用10~20倍的放大镜一片一片地对焊接质量进行检查
改进工艺提高产品可靠性的另一个例子是独石陶瓷电容器的包封工艺以酒精为溶剂的环氧树脂浸渍包封产品来说,由于包装的多孔性,受潮聚积水分为银离子的迁移提供了条件,造成产品短时间内大量失效为了提高独石陶瓷电容器的防潮性能,改用先涂覆GN521硅凝胶做底漆,再包封环氧树脂的工艺长期潮热负荷试验结果表明,这种包装工艺有很好的防潮性能,产品的可靠性有明显的提高
沉默的蜡烛
2025-07-09 04:50:17
①→用指针万用表的RX10K档测量是否漏电,(正常电容测量时表针稍微向右摆动一下,马上就回零,)这就正常,若指针停在某阻值处,不动,这就表示此电容漏电。
②→然后在用数字万用表的电容档测量一下此电容的容量,这就是判断瓷片电容的基本好坏。
③→若有条件的话,用电容耐压、漏电流测式仪
测更完美了。
爱笑的过客
2025-07-09 04:50:17
问题一:怎样判断电容好坏? 对于电容好坏的判断,可以用指针式万用表,也可以用数字表的测电容档。
对于1UF以上的电容,如果用指针式万用表,一般用R×1K档;对于1UF以下的电容,用R×10K档,将表笔分别接上电容的两极。这时万用表指针将摆动,然后慢慢恢复到零位或零位附近。这样的电容器是好的。电容器的容量越大,充电时间越长,指针向00方向摆动得也越慢。
如果接上后,指针不动显示的阻值很少并不动,可以肯定是坏。
如果用数字表的测电容档,可直接读到电容的容量(当然会有一点误差),如果读数和标示值相差太远或没有容量,就可判断此电容已经损坏。
问题二:如何检测一个电容的好坏 这是一个022UF/55V储能电容。测量方法如下:
先用电阻RX1K档测量电容两端阻值应无穷大,可说明电容没有漏电现象;
然后用一个手机电池对电容充电,(电容外壳为负极)
短时充电后,用直流10V~20V档测量电容两端,应有电压指示,即可说明电容没有失效。
OK~~
问题三:如何判断电容的好坏? 瓷片电容、云母电容、涤纶电容的容量小,用RX10K档测量。大于0022uf的表针微动,小于0022uf的表针不动,但是不能认为坏了。还可以利用一个降压变压器,把电容串接在次级(用5-10个),用电压表测量电压,所测电压相同的作为标准容量。 电解电容的测量:1至几十uf的用RX1K档测量,正向阻值越大越好,反向阻值1000K左右。 几十至几百uf的用RX100档跟踪至1K档,正向阻值越大越好,反向阻值在1000K左右。 几百至几千uf的用RX10K档跟踪至1K档,正向阻值越大越好,反向阻值在800K-900K左右。 大于0047uf的饥RX10K档测量表针不动,说明断路。5100P-0047uf的用RX10K档测量,表针稍动。小于5100P的用RX10K档只能测量出漏电或者击穿,容量和断路测量不出,只能用代换法。
问题四:如何判断电容好坏 对于电容好坏的判断,我建议你用指针式万用表,也可以用数字表的测电容档。
如果用指针式万用表,一般用R×1K档,将表笔分别接上电容的两极。这时万用表指针将摆动,然后慢慢恢复到零位或零位附近。这样的电容器是好的。电容器的容量越大,充电时间越长,指针向00方向摆动得也越慢。
如果接上后,指针不动显示的阻值很少并不动,可以肯定是坏。
楼主所说的16UF/450VAC的电容如果用指针式表R×1K档测试的话,指针摆动应为较大,之后回落到00处。至于两脚间的阻值为117M也不能说它已坏。如果能正常充放电的话,此电容还是好的。只是其容量就要用电容档测试才能准确知道。对于此电容的测试(仅限楼主所说的这只电容),最直接最简单的方法:用220V交流电直接接上,可以先接一极,用另一条电源线碰触另一电容脚。如果在碰触时有明显的不大的火花,就可以肯定此电容有充电,也就是说此电容没坏。
问题五:如何确定电容器好坏 30分 电容器的测量主要有两个指标,一个是容量,一个是击穿电压(耐压值)和温度特性。
测量分为简易测量和专用仪器测量,(1)简易测量就是用指针式万用电表看电容是否失效和击穿,击穿后的电容器是导通的,失效的电容,表针无摆动现象。一般小容量电容,万用电表在测电阻x1M或x1K档上,大容量电容在X1或x100档上。比较好数字万用表都有电容容量测量档的,可以直接读出容量。测量耐压一般使用高压发生器串联电阻后进行测量,用万用变DC1000V档,读出击穿电压。(2) 专业测量就是用电容测试仪,测试出容量耐压以及温度特性。
问题六:用数字万用表怎么判断一般电容的好坏? 用二极管档或电阻档测,先短接电容的二个脚进行放电,然后红表笔接正极,黑表笔接负极,如果有数据并且这个数据一直在增大,最后显示1,一般就是好的,果没反应就换合适的电阻档,如果老是显示1就是已击穿开路,如果数值在50以内是内部短路了。
问题七:如何检测电力电容好坏 判断电力电容器好坏的简易方法
现场检查和判断电力补偿电容器的好坏,可按如下简易方法和步骤进行:
一、 外部观察听诊法
1、 如发现电容器外壳变形,膨胀鼓肚现象,则说明电容器内部的绝缘介质或电极必有损坏,应立即退出运行报废并更换新品。
2、如发现电容器高压瓷瓶闪烙炸裂或已出现喷油、溢出内部绝缘介质等现象,也应立即判断为电容器损毁,要妥善处理和回收上缴损毁品,更换新品。
3、电容器在正常运行时,不应有任何响声。如听到有异常“噼”、“啪”放电声或“嗡嗡”的沉闷响声,说明电容器内部必有故障,应立即停运做进一步检查处理或更换新品。
4、电容器在运行时,如发现该组电容器开关出现事故跳闸或高压跌落保险丝熔断现象,应退出运行,待查明电容器确无故障后方可再次投运。
二、 绝缘摇表测试法
放电并解开电容器的外部连线待测。
选取一只与电容器工作电压相当的电压等级的兆欧表(一般规定:1000伏以下用500伏或1000伏兆欧表; 1000伏以上的使用1000伏或2500伏的兆欧表) 摇测电容器的绝缘电阻。摇测时应戴绝缘手套或站在绝缘体上,按约120转/分的转速保持匀速,再将测试线(笔)一次性可靠触及电容器被测导体搭试测量,经摇表发电机连续30秒~60秒对电容器充电并读取数据后,迅速将测试线(笔)离开被试品切断电路,然后才降低和终止摇表摇把的转动,以避免被充的电容器的剩存电荷通过摇表内电路放电漏掉和打坏指示表针,烧毁摇表内二极管等内部元件。
将电容器短路放电,可按下列会出现的三种结果进行判断:
1、 如果兆欧表摇测时表针从零开始,逐渐增大至一定数值并趋于平稳,摇测后将电容器短路时有放电的清脆响声和火花,说明电容器充放电性能良好,只要绝缘不低于规定值,即可判断该电容器为合格,只管放心投入运行。
2、 如果兆欧表有一些读数,但短路时却没有放电火花,则表示电极板和接线柱之间的连接导线已断裂,须退出运行或更换新品。
3、 如果兆欧表停在零位,则表明电容器已经击穿损坏,不得再次使用。
问题八:怎样判断电力电容器好坏 视电解电容器容量大小,通常选用万用表的R×10、R×100、R×1K挡进行测试判断。红、黑表笔分别接电容器的负极(每次测试前,需将电容器放电),由表针的偏摆来判断电容器质量。若表针迅速向右摆起,然后慢慢向左退回原位,一般来说电容器是好的。如果表针摆起后不再回转,说明电容器已经击穿。如果表针摆起后逐渐退回到某一位置停位,则说明电容器已经漏电。如果表针摆不起来,说明电容器电解质已经干涸推失去容量。 有些漏电的电容器,用上述方法不易准确判断出好坏。当电容器的耐压值大于万用表内电池电压值时,根据电解电容器正向充电时漏电电流小,反向充电时漏电电流大的特点,可采用R×10K挡,对电容器进行反向充电,观察表针停留处是否稳定(即反向漏电电流是否恒定),由此判断电容器质量,准确度较高。黑表笔接电容器的负极,红表笔接电容器的正极,表针迅速摆起,然后逐渐退至某处停留不动,则说明电容器是好的,凡是表针在某一位置停留不稳或停留后又逐渐慢慢向右移动的电容器已经漏电,不能继续使用了。表针一般停留并稳定在50-200K刻度范围内。
问题九:如何简易判断电容器的好坏 万用表的测量办法:
旋钮拨至欧姆档:
1、无极性电容器――通则坏。
2、电解电容器――表针迅速右摆,而后慢慢返回原处为好的,容量越大摆动角度就越大。指针若返回不了原处,表明该电容器漏电。
无万用表时的测量办法:
利用干电池和灯泡测试:灯亮则坏。
隐形的橘子
2025-07-09 04:50:17
直接万用表电阻挡20k档,正反表笔测试测试此电容器没有短路(低于1k阻值),就不用管,
此类01uf电容器,通常都是旁路或者电源高频滤波用的普通电容,拆除用0047到022uf瓷片或者聚丙烯涤纶电容替换都行。
烂漫的板栗
2025-07-09 04:50:17
中周内部的垫振电容,很少坏的。
短路和漏电,可用万用表的高阻挡测试,因为它的容量很小,只有几P到几十P,把它与好的瓷片电容对比电阻值就可知道,它和电解电容不好测试漏电不一样。
至于失效,你可把电容放入中周谐振电路中,用频谱仪在线路工作时候用探头对准谐振中周测试它的波形的中心频率,示波器在振荡弱的时候不好测试,同时往往只要搭上探头频率就会改变。也可用于一个产生准确的你的中周455或465KHz的信号源,用示波器看有没有被削弱或变形。如果没有示波器,只能从中周后面的解调或检波中的低频信号中听声音大小,把它与正常的做比较。如果你什么都没有,只有采用替换法试试。
不要用LC表电容表测试,这个东西没有你现成的中周谐振电路准。