建材秒知道
登录
建材号 > 瓷片 > 正文

工业上怎么检测钛酸钡粉体的ptc效应

妩媚的吐司
外向的灰狼
2023-05-04 23:42:20

工业上怎么检测钛酸钡粉体的ptc效应

最佳答案
无私的绿茶
懵懂的小海豚
2025-08-04 21:11:23

BaTiO_3基PTC陶瓷材料具有独特的电阻-温度特性,其电阻在居里温度T_C附近一个较窄的温度范围内能快速增长几个数量级。典型的钛酸钡基PTC陶瓷电阻温度特性存在两个特征温度,一个是最小电阻率温度T_(ρmin),另一个为最大电阻率温度T_(ρmax)。当温度低于T_(ρmin)时,展现出NTC效应;在T_(ρmin)和T_(ρmax)之间时,展现出PTC效应;当温度高于T_(ρmax)时,又展现出NTC效应。以往人们对钛酸钡基PTC陶瓷的研究大都关注于PTC效应的起源和正温度系数的调控,极少有针对NTC效应的研究报道。本论文正是在这一背景下展开的,目的是通过对钛酸钡基PTC陶瓷NTC效应的研究,探索PTC效应的起源,同时,尝试将NTC和PTC效应结合,期望开发出一种新型的双功能热敏元件,实现感测和控制一体化。通过一系列的研究,本论文取得如下一些结果:1Y掺杂BaTiO_3陶瓷在低温区和高温区具有NTC特性。Nb掺杂BaTiO_3陶瓷在低温区无NTC特性,在高温区具有NTC特性。2Y掺杂BaTiO_3陶瓷在-55℃~10℃(正交相)、10℃~T_(ρmin)(四方相)和T_(ρmax)~400℃(立方相)各段温区内势垒高度为定值,而在相变温度处,势垒高度会发生变化。正交-四方相变使势垒高度降低,四方-立方相变引起势垒增高。3Pb部分取代Y掺杂Ba TiO_3陶瓷提高了低温区NTC特性,降低了PTC特性。组成为(Ba_(08464)Y_(00036)Pb_(015))TiO_3+01wt%Al_2O_3+05wt%SiO_2的样品,在1280℃下烧结2 h时具有最优的NTC/PTC综合性能,室温电阻率为2178Ωcm,升阻比为299,NTC特性热敏常数为1141 K。4Sr部分取代Y掺杂BaTiO_3陶瓷降低了高温区NTC特性,少量Sr(<10 mol%)能提升PTC特性,过量则形成相反效果。5通过复阻抗谱解析得到,NTC特性由晶界产生。在低温区,晶界的导电方式为小极化子跳跃导电,跳跃方式为最近邻跳跃(NNH);晶粒的导电方式为载流子在导带中迁移导电。在高温区,晶粒与晶界的导电方式均为小极化子跳跃导电,其跳跃方式均为NNH。NTC特性主要由极化子受热激发跳跃导电产生。6晶界对PTC陶瓷的阻温特性起决定性作用。本论文认为:在非相变温区,晶界势垒为一定值;但在相变温度处,晶界势垒会发生改变。相变产生的势垒的表达式为ΔΦ=ΦO+ΦJ+ΦB,ΦO、ΦJ、ΦB分别代表退极化产生的势垒、氧吸附层产生的势垒和晶界玻璃相产生的势垒。……   [关键词]:PTC陶瓷;NTC效应;导电机理;晶界[文献类型]:硕士论文[文献出处]:华南理工大学2018年下载本文参考文献期刊 | 高性能钛酸锶钡PTC材料的研究论文 | 块体、厚膜和薄膜NTC热敏电阻的制备与性能论文 | BaTiO_3基复合PTC材料的研究共引文献期刊 | Mn(NO_3)_2掺杂BaTiO_3半导体材料特性二级参考文献论文 | 电化学阻抗谱在复合材料结构和性能研究中的应用论文 | 一维及准一维无序体系电子输运性质研究论文 | 新型半导体材料和红外器件的输运性质研究相似文献期刊 | 锂离子电池负极材料钛酸锂研究进展期刊 | 钛酸锂钾制备六钛酸钾片晶及过程控制论文 | 钛酸钡基陶瓷的高温电场烧结研究会议 | 尖晶石钛酸锂纳米管的制备与表征报纸 | 昆明工信委到镇江调研低成本钛酸锂产业化项目 搜文献手机知网-极简版-触屏版-搜索-客服12月14日 13:40App内打开

最新回答
激昂的溪流
痴情的钢笔
2025-08-04 21:11:23

钛酸钡的相对分子质量是2331。

钛酸钡是一种强介电化合物材料,具有高介电常数和低介电损耗,是电子陶瓷中使用最广泛的材料之一,被誉为”电子陶瓷工业的支柱“。钛酸钡是一种典型的铁电体,所以提到钛酸钡,就一定要提到它的自发极化。

一般来讲,电介质的电 极化过程(方式)有三种,即 电子位移极化、离子位移极化和固有 电矩转向极化。对于钛酸钡而言,经过 物理学家的严格推算,钛酸钡的自发极化的贡献主要来自于Ti的离子位移极化和氧八面体其中一个O的电子位移极化。具体的推算过程过程比较简单,但内容冗长,这里不予叙述,请读者参考有关书籍。

铁电畴:

钛酸钡晶体是由无数钛酸钡晶胞组成的。当立方钛酸钡晶体冷却到 居里点Tc时,将开始产生 自发极化,并同时进行立方相向四方相的转变。在发生 自发极化的时候,其中一部分相互临近的 晶胞都沿着原来立方晶胞的某个 晶轴产生 自发极化,而另一部分相互临近的晶胞可能沿原立方晶胞的另一个晶轴产生自发极化。

这样当钛酸钡转变成四方相后,晶体就出现了沿不同方向 自发极化的晶胞小单元,我们称之为电畴。也就是说,通过降低温度,晶体从顺电相转变为铁电相时,由于 自发极化,引起表面静电相互作用变化,产生电畴结构。

柔弱的大炮
暴躁的自行车
2025-08-04 21:11:23
电容种类一般可大致分为陶瓷电容、电解电容、钽电容三种。根据其特点及发挥的作用分布在主板的不同位置。而电源部分所使用的电解电容和CPU附近的陶瓷电容对整块主板稳定性影响是最大的。在电源部分所使用的电解电容可以对外接电源所提供的电流进行第一波过滤,CPU及内存旁边的陶瓷电容则可以进行第二波过滤,再配合以钽电容,可以在最大程度上保持电流的纯净,进而保障系统的稳定。
电解电容器电解电容是一种介质为电解液涂层有极性,由金属箔(铝/钽)作为正电极,金属箔的绝缘氧化层(氧化铝/钽五氧化物)作为电介质。电解电容特性为成本相对比较低,且单位体积的电容量非常大,比其它种类的电容大几十到数百倍,电解电容具高容值及低成本的优势,但缺点是ESR(内电阻)大及有浆爆风险。
电解电容器是指在铝、钽、铌、钛等阀金属(ValveMetal)的表面采用阳极氧化法生成一薄层氧化物作为电介质,并以电解质作为阴极而构成的电容器。电解电容器的阳极通常采用腐蚀箔或者粉体烧结块结构,主要有铝电解电容器(Aluminium Electrolytic Capacitor)和钽电解电容器(Tantalum Electrolytic Capacitor)。
铝质电解电容是电容中使用最广泛的一种,也是发展成熟的产品,优点是静电容量大且价格便宜,应用在声音、影像或产生动作效果之电子及电机产品,包含资讯工业、通讯工业、军事及消费性电子产品。但是铝质电解电容易受温度影响,电容量不稳定,RF高频性能不佳,以及容易乾化及漏电解液等缺点。国内外供应商包括日系Nippon Chemi-con、Nichicon、Rubycon、Panasonic、Sanyo Electric为代表,国内主重要的厂商有立隆电、智宝、金山电、日电贸、奥斯特、凯美等被动元件业者。
钽质电解电容器可视为是铝质电解电容器的进阶产品,其与铝质电解电容相比有许多优势,如较小的体积、低漏电值、低散溢特性、低 ESR值、及在高温下有更稳定的容量和更长的寿命,但却有突破电压、逆电压等无持久性,不不耐机械冲击的缺点。钽质电解电容生产商包括: KEMET、AVX、ELNA等。
铝质电容与钽质电容比较:
项目 容值 额定电压 工作温度范围 稳定性 高频特性 漏电流 价格 承受浪涌能力 温度特性
铝电容 大 高 小 低 差 大 低 好 差
钽电容 小 低 大 高 好 小 高 差 好
铝电容的额定电压、容量可以做很大,但频率与温度特性差,在高频与高温情况下,容质会变小,所以铝电容适合用於滤除低频杂讯。钽电容的额定电压、容量小,但频率与温度特性好。铝电容容量大,钽电容容量小,所以对於大电流变化的电路,如功放电源滤波,适合采用铝电容。
陶瓷电容器陶瓷电容可分为单层及多层陶瓷电容器,多层陶瓷电容器(MLCC,也称积层陶瓷电容)因具有体积小、电容量大、高频使用时损失率低、适合大量生产、价格低廉及稳定性高等特性,在一切讲求轻、薄、短、小产品化的发展趋势及表面黏著技术(SMT)应用日益普及下,发展空间较单层陶瓷电容大。
MLCC其电容值含量与产品表面积大小、陶瓷薄膜堆叠层数成正比。近年来由於陶瓷薄膜堆叠技术越来越进步,电容值含量也越来越高,逐渐取代中低电容,如电解电容和钽质电容的市场应用,加上MLCC可以透过SMT直接黏著,生产速度比电解电容和钽质电容更快,因此陶瓷基层电容的市场发展越来越受重视,是发展相当快速的电容器产品,主要供应商包括:日系Murata Mfg、Kyocera、TDK、Taiyo Yuden、Panasonic,及国内国巨、华新科、禾伸堂、天扬、蜜望实、 达方,与大陆风华高科。
陶瓷电容器采用钛酸钡、钛酸锶等高介电常数的陶瓷材料作为电介质,在电介质的表面印刷电极浆料,经低温烧结制成。陶瓷电容器的外形以片式居多,也有管形、圆片形等形状,陶瓷电容器的损耗因子很小,谐振频率高,但其缺点是单位体积的容量较小

温柔的大侠
如意的寒风
2025-08-04 21:11:23
据我所知,目前,压电元件材料一般有三大类,即压电晶体、压电半导体和压电陶瓷材料。
压电材料中研究得比较早的压电晶体是石英晶体,它的机电性能稳定,没有内耗,它在频率稳定器、扩音器、电话、钟表等领域里都有广泛应用。此外,酒石酸钾钠、磷酸二氢胺、钽酸锂、铌酸锂、碘酸锂等晶体也都是比较好的压电晶体材料。
压电半导体材料主要有CdS、CdSe、ZnO、ZnS、ZnTe、CdTe等IIB~VIA族化合物及GaAs、GaSb、InAs、InSb、AIN等Ⅲ~ⅤA族化合物。目前,在微声技术上用得最多的是CdS、CdSe和ZnO。
压电陶瓷材料主要有钛酸钡(BaTiO3)、钛酸铅(PbTiO3)和锆钛酸铅。其中,钛酸钡是第一个被发现可以制成陶瓷的铁电体,钛酸钡单晶的介电常数各向异性显著,沿极化轴方向的介电常数比垂直于极化轴方向小得多,但极化陶瓷的各向异性比单晶小得多,陶瓷的介电常数与晶粒大小和密度有关。钛酸铅是一种典型的钙钛矿结构铁电体,其晶格结构与钛酸钡相似,钛酸铅晶体结构的各向异性大,矫顽电场又高,因此对致密的纯钛酸铅陶瓷很难获得优良的压电性能。钛酸铅陶瓷制备中的改性主要是通过添加物改善其工艺性能,以便获得电阻率较高又不开裂的致密陶瓷体。其中比较成功的途径是加入高价离子置换Pb2+或Ti4+,在晶格中生成A缺位。由于钛酸铅陶瓷介电常数低,机械品质因数高,适于高频和高温下应用。锆钛酸铅压电陶瓷是由锆酸铅和钛酸铅构成的固溶体压电陶瓷材料。锆酸铅(PhZrO3)也是一种具有钙钛矿结构的化合物,但在室温下却是斜方反铁电体。对锆钛酸铅固溶体压电陶瓷的改性主要途径是在化学组成上作适当地变化,即离子置换形成固溶体或添加少量杂质,以获得所要求的电学性能和压电性能。

大力的往事
彪壮的大树
2025-08-04 21:11:23

1、保温材料:气凝胶毡

2、绝缘材料:氧化铝、氧化铍、滑石、镁橄榄石质陶瓷、石英玻璃和微晶玻璃等;铁电和压电材料钛酸钡系、锆钛酸铅系材料等。

3、磁性材料:锰—锌、镍—锌、锰—镁、锂—锰等铁氧体、磁记录和磁泡材料等;导体陶瓷钠、锂、氧离子的快离子导体和碳化硅等;半导体陶瓷钛酸钡、氧化锌、氧化锡、氧化钒、氧化锆等过滤金属元素氧化物系材料等。

光学材料:钇铝石榴石激光材料,氧化铝、氧化钇透明材料和石英系或多组分玻璃的光导纤维等。

4、高温结构陶瓷:高温氧化物、碳化物、氮化物及硼化物等难熔化合物超硬材料碳化钛、人造金刚石和立方氮化硼等;人工晶体铝酸锂、钽酸锂、砷化镓、氟金云母等;生物陶瓷:长石质齿材、氧化铝、磷酸盐骨材和酶的载体材料等;无机复合材料:陶瓷基、金属基、碳素基的复合材料。

扩展资料

无机非金属材料在国民经济建设中的作用和地位

作为四大材料中(钢铁、有色、有机和无机非金属材料)工业之一的无机非金属材料工业在中国经济建设中起着重要的作用。无机非金属材料不仅在品种上有了空前的发展,而且在内涵上有了进一步的延伸。根据无机非金属材料功能与作用的不同,可以将无机非金属材料划分为传统无机非金属材料(建筑材料)和无机非金属新材料。

传统的无机非金属材料材料品种繁多,主要是指大宗无机建筑材料,包括水泥、玻璃、陶瓷与建筑(墙体)材料等。其产量占无机非金属材料的绝大多数。建筑材料与人们的生活质量息息相关。

新型无机非金属材料是指具有如高强、轻质、耐磨、抗腐、耐高温、抗氧化以及特殊的电、光、声、磁等一系列优异综合性能的新型材料,是其它材料难以替代的功能材料和结构材料。无机非金属新材料具有独特的性能,是高技术产业不可缺少的关键材料。

例如稀土掺杂石英玻璃广泛应用于导弹、卫星及坦克火控武器等激光测距系统,耐辐照石英玻璃应用于各种卫星及宇宙飞船的姿控系统;光学纤维面板和微通道板作为像增强器和微光夜视元件在全天候兵器中得到应用;航空玻璃为中国各类军用飞机提供了关键部件。

二氧化硅气凝胶是最轻的固体材料,也是导热系数最低的材料,被广泛开发应用于管道、设备保温。是人工晶体材料中激光、非线性光学和红外等晶体,用于弹道制导、电子对抗、潜艇通讯、激光武器等。

特种陶瓷中,耐高温、高韧性陶瓷可用于航空、航天发动机、卫星遥感,可制作特殊性能的防弹装甲陶瓷及特种纤维及用于电子对抗等。已开发了近四千种高性能、多功能无机非金属新材料新品种。这些高性能材料在发展现代武器装备中起到十分重要的作用。

参考资料来源:百度百科-无机非金属材料工程

参考资料来源:百度百科-无机非金属材料

个性的心情
标致的荷花
2025-08-04 21:11:23
1941年12月,太平洋战争爆发。美国人的潜艇仿佛长了眼睛似的,穿过了日本人设置的层层水雷封锁线,神不知鬼不觉地钻进日本海,向日本舰船发起突然袭击,使日本海军损失惨重;与此同时,日本的潜艇一钻进美国的军港或海岸边,不知怎的,就遭到美国军舰或飞机的攻击。
“这是怎么回事呢”日本海军官员百思不得其解,“难道美国人使用了什么秘密武器”的确,美国人使用了一种“秘密武器”——声纳。
声纳是一种利用声波在水下测定目标距离和运动速度的仪器。美国人在潜艇上装了类似声纳的“探雷器”,因此对于日本人设置的水雷封锁线及舰船的所在位置一目了然;美国人还在军港和海岸的航道口装上了声纳,这样,海里的任何动静都逃不过美国人的“耳目”。
声纳诞生于第二次世界大战。它的发明,凝聚着几代科学家的心血。早在1490年,意大利著名美术家、科学家达·芬奇就注意到了声音在水中的传播。有一次,他来到海边写生。完成一幅画后,好奇的达·芬奇忽然产生了一个念头:水里面到底有没有什么声音于是,他取来一根管子,将管子的一端插到水里,管子的另一端放在耳朵旁。结果听到了“咕噜咕噜”的声音。经过仔细的辨认,他发现这是远方的船航行时螺旋桨击水放出的声响。达·芬奇的这根管子可以算是声纳最古老的祖先了。
3个多世纪后,瑞士物理学家柯拉顿和德国数学家斯特模,对声音在水中的传播进行了深入的探讨。在这以后,许多科学家也进行这方面的研究。经过反复实验,他们比较精确地测出声音在水中的传播速度为5500公里每小时,比在空气中的传播快4倍。此外,科学家们还发现,声音在水中传播,遇到海洋中的物体或海底时,声音会被反射回来,此时也被“吞掉”一些声波。不同频率的声波,在水中被吸收和反射的程度也不相同。超声波能量集中,可朝一个方向传播,反射回来的声波比较强烈。
这个时期,正值潜水艇在海里称王称霸的时期。人们对于潜水艇的神出鬼没正感到束手无策。自然而然地,科学家们想到:利用超声波在水中的传播特性,不就可以测出潜艇所在的方位、距离了吗
可是,要实现超声波在水中的发射和接收谈何容易!一时研制潜水艇“克星”的工作搁浅了!1880年,英国科学家彼埃尔、居里等成功地制造出换能器,实现了电、声信号的转换。这样,通过换能器,可将电波变成声波,并向海里发射;声波遇到物体后,又反射回来,换能器接收到声波,并把它变成电波,显示出来。根据超声波发出到接收所需的时间,就可以测出发射地点与物体之间的距离。
就这样,世界上第一代声纳诞生了。后来,科学家在第一代声纳的基础上,做了许多改进,发明了“主动式声纳”和“被动式声纳”两大类。
主动式声纳,主动发出声信号,去寻找水下目标,根据声波的反射情况做出判断;被动式声纳,收听水中目标发出的噪音,从而测出目标所在的方位、距离。然而,这两类声纳在使用过程中,也暴露出一些缺陷:主动式声纳发出的声波容易被水中的潜水艇发现;被动式声纳对于不发声的目标无能为力。
科学家们决心对声纳做进一步的改进。他们从海脉的身上得到了启迪。 本世纪60年代,生物学家诺里斯发现,用橡皮蒙住海脉双眼,丝毫不影响它的活动;可把海脉前额蒙住,它在水下就像瞎子一样,到处乱撞。显然,海脉是用前额发出声波来行动的。
经过进一步研究,科学家发现海脉有两架“声波发射机”:当它“观察”远距离目标时,它就发射低声,以实现远距离传播;当它“观察”近距离目标时,它就改发超声,以提高分辨率。它也有两架“声波接收机”。海脉的声纳竟是如此先进,如此完美!科学家“虚心”向海脉学习,以海脉的声纳为发明的奋斗目标。
不久,美国科学家发明了军用高级声纳。它是一种多波束回声探测仪,采用两套相同的水听器发射阵。它的性能要比先前的声纳出色得多。
科学家还从海琢声纳外的特制导流罩抗水流噪音的性能,得到启发,研制出“声纳导流罩”。有了它,军舰可不必像以前那样需要静止下来时才使用声纳,即使在高速前进,也可以便用声纳,而不受自身噪音的干扰。
海豚 ,领着科学家走上声纳发明的最高境界。