时尚的洋葱
2025-08-05 11:05:39
(1)在粉末制备方面,目前最引人注目的是超高温技术。利用超高温技术不但可廉价地研制特种陶瓷,还可廉价地研制新型玻璃,如光纤维、磁性玻璃、混合集成电路板、零膨胀结晶玻璃、高强度玻璃、人造骨头和齿棍等。此外,利用超高温技术还可以研制出象钽、钼、钨、钒铁合金和钛等能够应用于太空飞行、海洋、核聚变等尖端领域的材料。例如日本在4000—15000℃和一个大气压以下制造金钢石,其效率比普遍采用的低温低压等离子体技术高一百二十倍。
超高温技术具有如下优点:能生产出用以往方法所不能生产的物质;能够获得纯度极高的物质:生产率会大幅度提高;可使作业程序简化、易行。在超高温技术方面居领先地位的是日本。据统计,2000年日本超高温技术的特种陶瓷市场规模也将会超过20万亿日元。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶K凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。在这几种方法中,绝大部分是开发研究出来的或是得以完善的。
(2)成型方面:特种陶瓷成型方法大体分为干法成型和湿法成型两大类,干法成型包括钢模压制成型、等静压成型、超高压成型、粉末电磁成型等;湿法成型大致可分为塑性成型和胶态浇注成型两大类。近些年来胶态成型和固体无模成型技术在特种陶瓷的成型研究中也取得了较为快速的发展。
陶瓷胶态成形是高分散陶瓷浆料的湿法成形,与干法成形相比,可以有效控制团聚,减少缺陷。无模成形实际上是快速原型制造技术(Rapid prototyping manufacturing technology,RP &M) 在制备陶瓷材料中的应用。特种陶瓷材料胶态无模成形过程是通过将含或不含粘结剂的陶瓷浆料在一定的条件下直接从液态转变为固态,然后按照RP &M 的原理逐层制造得到陶瓷生坯的过程。成形后的生坯一般都具备良好的流变学特性,可以保证后处理过程中不变形。
特种陶瓷成型技术未来的发展将集中于以下几个发面:
a、进一步开发已经提出的各种无模成形技术在制备不同陶瓷材料中的应用;
b、性能更加复杂的结构层以及在层内的穿插、交织、连接结构和成分三维变化的设计;
c、大型异形件的结构设计与制造;
d、 陶瓷微结构的制造及实际应用;
e、进一步开发无污染和环境协调的新技术。
(3)烧结方面:特种陶瓷制品因其特殊的性能要求,需要用不同于传统陶瓷制品的烧成工艺与烧结技术。随着特种陶瓷工业的发展,其烧成机理、烧结技术及特殊的窑炉设施的研究取得突破性的进展。特种陶瓷的主要烧结方法有:常压烧结法、热压烧结/热等静压烧结法、反应烧结法、液相烧结法、微波烧结法、电弧等离子烧结法、自蔓延烧结法、气相沉积法等。
(4)在特种陶瓷的精密加工方面:特种陶瓷属于脆性材料,硬度高、脆性大,其物理机械性能(尤其是韧性和强度)与金属材料有较大差异,加工性能差,加工难度大。因此,研究特种陶瓷材料的磨削机理,选择最佳的磨削方法是当前要解决的主要问题。
如今兴起的磨削加工方法主要有:
a、超声波振动磨削加工方法;
b、在线电解修整金刚石砂轮磨削加工方法;
c、电解、电火花复合磨削加工工艺;
d、电化学在线控制加工方法。
采用刀具加工陶瓷也引起了人们的极大兴趣。这方面的工作仅处于研究实验阶段,由于用超高精度的车床和金刚石单晶车刀进行加工,以微米数量级的微小吃刀深度和微小的走刀量,能获得01微米左右的加工精度,因而许多国家把这种加工技术作为超精密加工的一个方面而加以开发研究,在中国,清华大学新型陶瓷与精细工艺国家重点实验室在这方面的研究成果已位居世界前列。 特种陶瓷由于拥有众多优异性能,因而用途广泛。现按材料的性能及种类简要说明。
(1)耐热性能优良的特种陶瓷可望作为超高温材料用于原子能有关的高温结构材料、高温电极材料等;
(2)隔热性优良的特种陶瓷可作为新的高温隔热材料,用于高温加热炉、热处理炉、高温反应容器、核反应堆等;
(3)导热性优良的特种陶瓷极有希望用作内部装有大规模集成电路和超大规模集成电路电子器件的散热片;
(4)耐磨性优良的硬质特种陶瓷用途广泛,如今的工作主要是集中在轴承、切削刀具方面;
(5)高强度的陶瓷可用于燃气轮机的燃烧器、叶片、涡轮、套管等;在加工机械上可用于机床身、轴承、燃烧喷嘴等。这方面的工作开展得较多,许多国家如美国、日本、德国等都投入了大量的人力和物力,试图取得领先地位。这类陶瓷有氮硅、碳化硅、塞隆、氮化铝、氧化锆等;
(6)具有润滑性的陶瓷如六方晶型氮化硼极为引人注目,国外正在加紧研究;
(7)生物陶瓷方面正在进行将氧化铝、磷石炭等用作人工牙齿、人工骨、人工关节等研究,这方面的应用引起人们极大关注;
(8)一些具有其他特殊用途的功能性新型陶瓷(如远红外陶瓷等)也已开始在工业及民用领域发挥其独到的作用。 (1)特种陶瓷基础技术的研究,例如烧结机理、检测技术和粉末制备技术等;
(2)超导陶瓷的研究;
(3)特种陶瓷的薄膜化或非晶化是提高陶瓷功能的有效方法,因而许多国家都把它作为一项主要内容而加以研究;
(4)陶瓷的纤维化是研制隔热材料、复合增强材料等的重要基础,如今国外,尤其是日本对陶瓷纤维及晶须增强金属复合材料的研究极为重视,其研究主要集中于碳化硅及氮化硅;
(5)多孔陶瓷由于具有特殊结构,所以引起了各界的重视;
(6)陶瓷与陶瓷或陶瓷与其它材料复合(陶瓷纤维增强陶瓷,陶瓷纤维增强金属)问题也是现阶段的研究重点;
(7)在非氮化物陶瓷中,目前国外研究最多的是陶瓷发动机,高压热交挽器及陶瓷刀具等;
(8)随着生物化学,生物医学这些新兴学科的发展,生物陶瓷的开发研究也变得越来越重要。
慈祥的砖头
2025-08-05 11:05:39
陶瓷(AL2O3)基板简介
产品简介:
本产品是由贵金属所构成的高传导介质电路与高热传导系数绝缘材料结合而成的高热传导基板。可又效解决PCB与铝基板低导热的问题。达到有效将高热电子元件所产生的热导出,增加元件稳定度及延长使用寿命。
产品特性:
不需要变更原加工程序
优秀机械强度
具良好的导热性
具耐抗侵蚀
具耐抗侵蚀
良好表面特性,优异的平面度与平坦度
抗热震效果佳
低曲翘度
高温环境下稳定性佳
可加工成各种复杂形状
陶瓷(AL2O3)基板与铝基板比较表
陶瓷(AL2O3)基板 铝基板
高传导介378~429W/(m·K)
陶瓷(AL2O3)24~51W/(m·K)
铜箔 390~401W/(m·K)
绝缘体 08~22W/(m·K)
铝板 210~255W/(m·K)
直接导热 绝缘层阻绝导热
陶瓷(AL2O3)基板与其他厂陶瓷(AL2O3)基板比较表
陶瓷(AL2O3)基板 其他厂陶瓷(AL2O3)基板
高传导介质 378~429W/(m·K)
陶瓷(AL2O3)板 24~51W/(m·K)
铜箔 390~401W/(m·K)
陶瓷(AL2O3)板 24~51W/(m·K)
12XX°C-350°C电路正常
2高温加热锡盘450°C40秒电路正常
3制作过程不需酸洗,无酸的残留
4电阻率为159x10^-8Ωm 12XX°C-350°C电路剥离或被锡溶解
2高温加热锡盘450°C40秒电路剥离
3制作过程需酸洗,会由酸性物质残留,会造成线路氧化及剥离
应用:
LED照明用基板、高功率LED基板
PC散热、IC散热基板、LED电视散热基板
半导体及体集成电路的散热基板
可替代PCB及铝基板
应用实例:
10W LED球灯经红外线热像测温仪检测
点灯时间超过72小时
环境温度284°C
内壁温度60°C
点编号 温度 X Y 附注
1 8457 114 58 全面积最高温
2 8408 229 119
3 8227 118 181
4 6407 168 183
点编号 温度 X Y 附注
1 5331 117 143 全面积最高温
2 5278 138 155
3 4586 166 186
4 5189 205 159
陶瓷基板与铝基板比较图
陶瓷基板种类及比较:
系统电路板的种类包括:
铝基板(MCPCB)
印刷电路板(PCB)
软式印刷电路板(FPC)
陶瓷基板种类主要有:
高温熔合陶瓷基板(HTFC)
低温共烧多层陶瓷(LTCC)
高温共烧多层陶瓷(HTCC)
直接接合铜基板(DBC)
直接镀铜基板(DPC)
1-1 HTFC(Hight-Temperature Fusion Ceramic)
HTFC 称为高温熔合陶瓷基板,将高温绝缘性及高热传导的AL2O3或AIN陶瓷基板的单面或双面,运用钢板移印技术,将高传导介质材料印制成线路,放置于850~950°C的烧结炉中烧结成型,即可完成。
2-1 LTCC(Low-Temperature Co-fired Ceramic)
LTCC 又称为低温共烧多层陶瓷基板,此技术须先将无机的氧化铝粉与越30%~50%的玻璃材料加上有机粘结剂,使其混合均匀称为为泥装的浆料,接着利用刮刀把浆料刮成片状,再经由一道干燥过程将片状浆料形成一片片薄薄的生胚,然后依各层的设计钻导通孔,作为各层讯号的传递,LTCC内部线路则运用网版印刷技术,分别于生胚上做填孔及印制线路,内外电极则可分别使用银、铜、金等金属,最后将各层做叠层动作,放置于850~900°C的烧结炉中烧结成型,即可完成。
3-1 HTCC(Hight-Temperature Co-fired Ceramic)
HTCC 又称为高温共烧多层陶瓷,生产制造过程与LTCC极为相似,主要的差异点在于HTCC的陶瓷粉末并无玻璃材质,因此,HTCC必须在高温1200~1600°C环境下干燥硬化成生胚,接着同样钻上导通孔,以网版印刷技术填孔于印制线路,因其共烧温度较高,使得金属导体材料的选择受限,其主要的材料为熔点较高但导电性却较差的钨、钼、锰…等金属,最后再叠层烧结成型。
4-1 DBC(Direct Bonded Copper)
DBC 直接接合铜基板,将高绝缘性的AL2O3或AIN陶瓷基板的单面或双面覆上铜金属后,经由高温1065~1085°C的环境加热,使铜金属因高温氧化,扩撒与AL2O3材质产生(Eutectic)共晶熔体,是铜金属陶瓷基板粘合,形陶瓷复合金属基板,最后依据线路设计,以蚀刻方式备至线路。
5-1 DPC(Direct Plate Copper)
DPC 也称为直接镀铜基板,先将陶瓷基板做前处理清洁,利用薄膜专业制造技术—真空镀膜方式于陶瓷基板上溅镀于铜金属复合层,接着以黄光微影的光阻被覆曝光,显影,蚀刻,去膜制程完成线路制作,最后再以电镀/化学镀沉积方式增加线路的厚度,待光阻移除后即完成金属化线路制作。
陶瓷导热基板特性
在了解陶瓷散热基板的制造方法后,接下来将进一步的探讨各个散热基板的热性具有哪有差异,而各项特性又分别代表了什么样的意义,为何会影响散热基板在应用时必须作为考量的重点,以下表一 陶瓷导热基板特性比较中,本文取了导热基板的:(1)热传导率、(2)制程温度、(3)线路制作方法、(4)线径宽度、(5)制作线路是否需要酸洗或蚀刻、(6)陶瓷基板是否会残留酸、(7)焊点加工温度、(8)线路工作环境温度,八项特性作进一步的讨论:
表一、陶瓷导热板特性比较
Item HTFC LTCC HTCC DBC DPC
热传导系数
(W/mK) AL2O3:20~51(W/mK)
AIN:170~220(W/mK) 2~3(W/mK) 16~17(W/mK) AL2O3:20~51(W/mK)
AIN:170~220(W/mK) AL2O3:20~51(W/mK)
AIN"170~220(W/mK)
操作环境温度 850~950°C 850~900°C 1300~1600°C 1065~1085°C 250~350°C
线路制作方式 薄膜印刷 厚膜印刷 厚膜印刷 微影制程 微影制程
线径宽度 150um 150um 150um 150um 10~50um
酸洗蚀刻 不需要 不需要 不需要 需要 需要
残留酸 无 无 无 有(会侵蚀线路) 有(会侵蚀线路)
焊点加工 450°C/40秒线路正常 2XX°C~450°C/3~5秒线路剥离或被锡溶解(不可烙铁加工)
线路工作环境温度 800°C线路表面轻微碳化仍可正常运作 800°C线路完全剥离或完全碳化无法运作
热传导率
热传导率又称为热导率,它代表了基板材料本身直接传导热能的一种能力,数值越高代表其导热能力越好。LED导热基板最主要的作用就是在于,如何有效的将热能从LED晶粒传导到散热系统,以降低LED晶粒的温度,增加发光效率与延长LED寿命,因此,导热基板热传导效果的优劣就将成为业界在选用导热基板时重要的评估项目之一。检视表一,由把重陶瓷散热基板的比较可明显看出,虽然AL2O3材料的热传导率约在20~51(W/mK)之间,LTCC为降低其烧结温度而添加了30%~50%的玻璃材料,使其热传导率降至20~51(W/mK)左右;而HTCC因其普通共烧温度略低于纯AL2O3基板的烧结温度,而使其因材料密度较低使得热传导系数低于AL2O3基板约在16~17(W/mK)之间。一般来说,LTCC与HTCC导热效果并不如HTFC、DBC、DPC导热基板理想
独特的小兔子
2025-08-05 11:05:39
摘 要:本文介绍了导热系数的五种测试方法,描述各种方法的测试原理及其计算方法。材料导热系数测试方法各有其特点,在选择时,应该充分考虑测试材料的性质、导热系数范围、测试温度等。
关键词:导热系数;热流计法;防护热板法;圆管法;热线法;闪光法
1 前 言
导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1K,在1s内,通过1m2面积传递的热量,用λ表示,单位为W/m・K。陶瓷材料的导热系数是测量其热物理性质的关键。陶瓷耐火材料常被用作炉子的衬套,因为它们既能耐高温,又具有良好的绝热特性,可以减少生产中的能量损耗。航天飞机常使用陶瓷瓦作挡热板。陶瓷瓦能承受航天飞机回到地球大气层时产生的高温,有效防止航天器内部关键部件的损坏。在现代化的燃气涡轮电站,涡轮的叶片上的陶瓷涂层(如稳定氧化锆)能保护金属基材不受腐蚀,降低基材上的热应力。作为有效的散热器能保护集成电路板与其它电子设备不受高温损坏,陶瓷已经成为微电子工业领域的关键材料。若要在和热相关的领域使用陶瓷材料,则要求精确测量它们的物理性能。
热量传递的三种基本方式是:对流、辐射与传导。对流是流体与气体的主要传热方式,对固态与多孔材料传热不起重要作用。对于半透明与透明陶瓷材料,尤其在高温情况下,必须考虑辐射传热,除了材料的光学性质外,边界状况亦能影响传热。对于陶瓷材料而言,传导是最重要的传热方式,热量的传导基于材料的导热性能――传导热量的能力。
2 导热系数的测试方法
常用的导热系数测试方法有:热流计法、防护热板法、圆管法、热线法、闪光法。
(1) 热流计法
热流计法[1]是一种间接或相对的方法。它是测试试件的热阻与标准试件热阻的比值。当热板和冷板在恒定温度和温差的稳定状态下,热流计装置在热流计中心区域和试件中心区域建立一个单向稳定热流密度,该热流穿过一个(或两个)热流计的测量区域及一个(或两个接近相同)试件的中间区域。假定测量区域具有稳定的热流密度,以及稳定的温差和平均温度。用标准试件测得的热流量为Qs、为热阻Rs,被测试件测得的热流量为Qu、热阻为Ru,其比值为:
由式(1)可计算出Ru,如果满足确定导热系数的条件,且试件厚度d已知,可由公式(2)算出试件的导热系数λ。
(2) 防护热板法
防护热板法[2]的工作原理和热流法相似,其测试方法是目前公认的准确度最高的,可用于基准样品的标定和其他仪器的校准,其实验装置多采用双试件结构。其原理是在稳态条件下,在具有平行表面的均匀板状试件内,建立类似于两个平行的温度均匀的平面为界的无限大平板中存在的一维的均匀热流密度。双试件装置中,由两个几乎相同的试件组成,然后其中夹一个加热单元,加热单元由一个圆或方形的中间加热器和两块金属板组成。热流量由加热单元分别经两侧试件传给两侧冷却单元。当计量单元达到稳定传热状态后,测量出热流量φ以及此热流量流过的计量面的面积A,即可确定热流密度q。由固定于金属板表面或在试件表面适当位置的温度传感器测量试件两侧的温度差ΔT,热阻R可由Q、A和ΔT计算得出,计算方法如下:
当满足一定条件时,测定试件的厚度d,由式(2)可计算出试件的平均导热系数λ。
(3) 圆管法
圆管法[3]是根据圆筒壁一维稳态导热原理,测定单层或多层圆管绝热结构导热系数的一种方法。根据傅立叶定律,在一维、径向、稳态导热的条件下,管状绝热材料的结构导热系数可采用式(4)计算:
式中:
Q――通过绝热材料的热量,W;
d2――绝热材料外表面直径,m;
d1――绝热材料内表面直径,m;
t2――绝热材料外表面温度,℃;
t1――绝热材料内表面温度,℃;
l――绝热材料的有效长度,m。
如果绝热材料在管道上使用,则必须根据使用状况用圆管法进行测定。因为圆管法能将绝热材料在管道上的实际使用状况,如绝热材料间的缝隙及材料的弯曲等因素都反映在测试结果中。
(4) 热线法
热线法[4]是应用比较多的方法,是在样品(通常为大的块状样品)中插入一根热线。测试时,在热线上施加一个恒定的加热功率,使其温度上升。由于被测材料的导热性能决定这一关系,由此可得到材料的导热系数,可采用式(5)计算:
式中:
λ――导热系数,W/(m・K);
I――热线加热电流,A;
U――热线A、B间的端电压,V;
L――电压引出端A、B间热线的长度,m;
R――测定温度下热线A、B间的电阻,Ω;
t1、t2――从加热时起至测量时刻的时间,s;
θ1、θ2――t1和t2时刻热线的温升,℃。
这种方法的优点是产品价格便宜、测量速度快,对样品尺寸要求不太严格。缺点是分析误差比较大,一般为 5%~10%。这种方法不仅适用于干燥材料,而且还适用于含湿材料。该法适用于导热系数小于2W/m・K的各向同性均质材料导热系数的测定。
(5) 闪光法
闪光法[5]可看作是一种绝对的试验方法,适用测量温度为75~2800K,热扩散系数在10-7~10-3m2/s时的均匀各向同性固体材料。测试原理为:小的圆薄片试样受高强度短时能量脉冲辐射,试样正面吸收脉冲能量使背面温度升高,记录试样背面温度的变化。根据试样厚度和背面温度达到最大值的某一百分率所需时间,计算出试样的热扩散系数(α),然后根据材料的热扩散系数和体积密度及比热容,计算出材料的导热系数(λ)。热扩散系数和导热系数的计算公式如(6)和(7):
α=013879L2/t1/2(6)
式中:
α――热扩散系数,m2/s;
L――试样厚度,m;
t1/2――起始脉冲开始到试样背面温度升至最高时所需的一半时间,s。
λ=αcpρ(7)
式中:
λ――导热系数,W/m・K;
α――热扩散系数,m2/s;
cp――试样比热容,J/(kg・K);
ρ――试样体积密度,kg/m3。
从原理上讲,试样的热扩散系数根据试样的厚度、热量从正面传递到背面的特征时间函数来确定。试验的不确定度和很多因素有关,包括试验本身、测定的温度、探测器性能、数据采集系统、数据分析(特别是有限脉冲时间的影响)、试验的不均匀加热和热辐射损失。对这些不确定度的原因可进行系统考虑,并对每次试验进行仔细分析。该方法具有试样几何结构简单、尺寸小、易于加工、测速快、设备单一等特点。
3 结 语
材料的导热系数测试方法主要有热流法、防护热板法、圆管法、热线法以及闪光法。各种方法都有不同的特点,应综合考虑被测试样的性质、形状、导热系数的范围、测量温度等因素,选用合适的导热系数测试方法。
参考文献
[1] GB/T 10295-2008,绝热材料稳态热阻及有关特性的测定热流
法
[2] GB/T 10294-2008,绝热材料稳态热阻及有关特性的测定防护
热板法
[3] GB/T 10296-2008,绝热层稳态传热性质的测定圆管法
[4] GB/T 10297-1998,非金属固体材料导热系数的测定方法
[5] GB/T 22588-2008,闪光法测量热扩散系数或导热系数
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
无心的期待
2025-08-05 11:05:39
您好!佳日丰泰您身边的热管理解决方案专家为您详细解
导热陶瓷绝缘片有以下特点:
陶瓷片导热系数高达289W/(m-K)和170W/(m-K),大小不限,厚度从02mm~55mm。远比普通导热垫片的导热系数高,因此在功率器件散热要求非常苛刻的条件下得到了广泛的应用。而目前市场上常有的导热垫片的导热系数大都在20 W/(m-K)以下,导热系数较高的贝格斯Sil-Pad2000系列也只有35W/(m-K);是代替硅胶片、矽胶片、软矽胶垫、绝缘粒、云母片理想材料;
2使用寿命较长。可以减少设备的维修次数,提高设备运行的安全性和稳定性;
3耐高温和高压。陶瓷垫片的击穿强度在15kV~65kV,允许使用的最高温度达1600℃,能适应高温、高压、高磨损、强腐蚀的恶劣工作环境,满足电源产品在各种场合的应用要求。
如意的高跟鞋
2025-08-05 11:05:39
运行介质有:水、防冻液。导热硅胶或导热陶瓷片具多也是介质,具体要拆开才看得到。
打开阳台壁挂式太阳能热水器水箱中上部的加液封盖,拧掉密封螺盖,出现加液口(位置较高)和观察口(位置较低)。
找一根胶管,胶管的外径,要求小于加液口的直径。把胶管的一端,插进加液口。 另一端抬升到高于进液口的位置,开始用尖嘴壶或其他容器,向内加注防冻液。当防冻液从观察口流出时,停止加注。
太阳能热水器使用注意事项
加装伴热带时一定要注意选择质量过关的产品,以确保能正常使用,减少隐患。使用伴热带时注意化冻后及时关闭,电压不稳时尽量不要使用。
冬季多大风,太阳能热水器都是安装在室外,因此热水器与屋顶要安装稳固,以抵御大风的侵袭。如遇大风天气可将太阳能热水器内上满水,以增加热水器的抗风、承重能力,并断开电加热、仪表等电源。