压电效应的应用
压电效应可应用在:家用电器中常用的压电器件、常用压电器件的检测。
石英晶体谐振器
在石英晶体上加一交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变的电场,由于石英晶片具有固有的振动频率(称为石英晶体的谐振频率),因此,当外加交变电压的频率等于石英晶片的谐振频率时,这种振动就会突然增加,而在电路中反映出谐振特性,这种现象称为压电谐振效应。
陶瓷滤波器、陷波器
陶瓷滤波器、陷波器一般由一个或多个压电陶瓷振子为主而组成,而压电振子实际上就是一块夹在两个电极之间的压电晶片。陶瓷滤波器、陷波器是对频率非常敏感的电路元件。它们的特点是:体积小、成本低、无调整和可靠性高等。
蜂鸣片的检测
蜂鸣片是压电陶瓷片应用的一种器件。比较常见的是用锆、钛、铅的氧化物配制后烧结制成的压电陶瓷片(PZT),由于人耳对3kHz的音频信号最为敏感,所以生产时通常将蜂鸣片的谐振频率设计在3kHz左右。为了改善低频响应,一般采用双膜片结构。
压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号。它实际上是一种经过极化处理的、具有压电效应的铁电陶瓷。所谓压电效应是指某些介质在受到机械压力时,哪怕这种压力微小得像声波振动那样小,都会产生压缩或伸长等形状变化,引起介质表面带电,这是正压电效应。反之,施加激励电场,介质将产生机械变形,称逆压电效应。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能。19世纪末法国人发现了压电效应。20世纪40年代第一个压电陶瓷材料--钛酸钡出现。60年代到70年代,压电陶瓷不断改进,应用广泛。压电陶瓷材料通常做成长方体。当某一方向上的对应两面受到外力作用时,在压电陶瓷的这两面上就会出现电荷堆积,电量的大小与受力的大小成正比。此时压电陶瓷相当于一个以压电材料为介质的电容器。电容两端的开路电压U=Q/C,Q为极板上电荷量的大小,与所受外力成正比,一般电量Q很小,因此感应出的U也很小。电路检测检测出U的变化,就可以知道是否受到振动了。平时,压电陶瓷片无电压信号输出,继电器不动作,报警器不发声,报警器处于警戒状态。当外部产生机械振动声音,压电陶瓷片检测到振动声并将其变换成电压信号,此电压信号经放大后使继电器动作,继电器触点闭合,报警器电路接通,从而高声警报。
本实验采用压电陶瓷换能器来实现声压和电压之间的转换。它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成。压电陶瓷片由多晶体结构的压电材料锆钛酸铅制成。在压电陶瓷片的两个底面加上正弦交变电压,它就会按正弦规律发生纵向伸缩,从而发出超声波。同样压电陶瓷可以在声压的作用下把声波信号转化为电信号。压电陶瓷换能器在声—电转化过程中信号频率保持不变。
S1作为声波发射器,它把电信号转化为声波信号向空间发射。S2是信号接收器,它把接收到的声波信号转化为电信号供观察。其中S1是固定的,而S2可以左右移动。
由波动理论得知,声波的传播速度v与声波频率 和波长 之间的关系为 。所以只要测出声波的频率和波长,就可以求出声速。其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。时差法可通过测量某一定间隔距离声音传播的时间来测量声波的传播速度。
声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在超声波测距、测量气体温度瞬间变化等方面具有重大意义。超声波在媒质中的传播速度与媒质的特性及状态因素有关。因而通过媒质中声速的测定,可以了解媒质的特性或状态变化。例如,测量氯气(气体)、蔗糖(溶液)的浓度、氯丁橡胶乳液的密度以及输油管中不同油品的分界面等等,这些问题都可以通过测定这些物质中的声速来解决。可见,声速测定在工业生产上具有一定的实用意义。同时,通过液体中声速的测量,了解水下声纳技术应用的基本概念。