瓷片电容技术的发展历程:1900年意大利L隆巴迪发明陶瓷介质电容;30年代末人们发现在陶瓷中添加钛酸盐可使介电常数成倍增长,因而制造出较便宜的瓷介质电容;1940年前后人们发现了现在的瓷片电容技术参数的主要原材料BaTiO3(钛酸钡)具有绝缘性后,开始将瓷片电容技术参数使用于对既小型、精度要求又极高的军事用电子设备当中
1960年左右陶瓷叠片电容作为商品开始开发
1970年,随着混合IC、计算机、以及便携电子设备的进步也随之迅速的发展起来,瓷片电容成为电子设备中不可缺少的零部件,而其中技术参数也是学者们研究的重点
现在的陶瓷介质电容的全部数量约占电容市场的70%左右
因为陶瓷介质电容的绝缘体材料主要使用陶瓷,其基本构造是将陶瓷和内部电极交相重叠
陶瓷材料有几个种类
自从考虑电子产品无害化特别是无铅化后,高介电系数的PB(铅)退出瓷片电容技术参数领域,现在主要使用TiO2(二氧化钛)、BaTiO3,CaZrO3(锆酸钙)等
和其它的电容相比具有体积小、容量大、耐热性好、适合批量生产、价格低等优点
由于原材料丰富,结构简单,价格低廉,而且电容量范围较宽(一般有几个PF到上百μF),损耗较小,电容量温度系数可根据要求在很大范围内调整
瓷片电容技术参数品种繁多,外形尺寸相差甚大从0402(约1×05mm)封装的贴片电容到大型的功率瓷片电容
按使用的介质材料特性可分为Ⅰ型、Ⅱ型和半导体瓷片电容;按无功功率大小可分为低功率、高功率瓷片电容;按工作电压可分为低压和高压瓷片电容;按结构形状可分为圆片形、管型、鼓形、瓶形、筒形、板形、叠片、独石、块状、支柱式、穿心式等
瓷片电容的分类:瓷片电容技术参数从介质类型主要可以分为两类,即Ⅰ类瓷片电容技术参数和Ⅱ类瓷片电容技术参数
Ⅰ类瓷片电容技术参数(ClassⅠceramiccapacitor),过去称高频瓷片电容技术参数(High-freqencyceramiccapacitor),是指用介质损耗小、绝缘电阻高、介电常数随温度呈线性变化的陶瓷介质制造的电容
它特别适用于谐振回路,以及其它要求损耗小和电容量稳定的电路,或用于温度补偿
Ⅱ类瓷片电容技术参数(ClassⅡceramiccapacitor)过去称为为低频瓷片电容技术参数(Lowfrequencycermiccapacitor),指用铁电陶瓷作介质的电容,因此也称铁电瓷片电容技术参数
这类电容的比电容大,电容量随温度呈非线性变化,损耗较大,常在电子设备中用于旁路、耦合或用于其它对损耗和电容量稳定性要求不高的电路中
常见的Ⅱ类瓷片电容技术参数有:X7R、X5R、Y5V、Z5U其中:X7R表示为:第一位X为最低工作温度-55℃,第二位的数字7位最高工作温度+125℃,第三位字母R为随温度变化的容值偏差±15%;X5R表示为:第一位X为最低工作温度-55℃,第二位的数字5位最高工作温度+85℃,第三位字母R为随温度变化的容值偏差±15%;Y5V表示为:第一位Y为最低工作温度-30℃,第二位的数字5位最高工作温度+85℃,第三位字母V为随温度变化的容值偏差+22%,-82%±15%
Z5U表示为:第一位Z为最低工作温度+10℃,第二位的数字5位最高工作温度+85℃,第三位字母U为随温度变化的容值偏差+22%,-56%
糊涂的身影
2025-12-05 08:21:20
1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。
电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。
容抗XC=1/2πf
c
(f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。
2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。其中:1法拉=103毫法=106微法=109纳法=1012皮法
容量大的电容其容量值在电容上直接标明,如10
uF/16V
容量小的电容其容量值在电容上用字母表示或数字表示
字母表示法:1m=1000
uF
1P2=12PF
1n=1000PF
数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。
如:102表示10×102PF=1000PF
224表示22×104PF=022
uF
3、电容容量误差表
符
号
F
G
J
K
L
M
允许误差
±1%
±2%
±5%
±10%
±15%
±20%
如:一瓷片电容为104J表示容量为0
1
uF、误差为±5%。
自觉的小熊猫
2025-12-05 08:21:20
我看您应该学会怎么换算,不是单纯给出几个参数就行,要不然以后你还得问。
电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。
容抗XC=1/2πfc(f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。
识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。其中:1法拉=103毫法=106微法=109纳法=1012皮法
容量大的电容其容量值在电容上直接标明,如10uF/16V
容量小的电容其容量值在电容上用字母表示或数字表示
我们常用的电容有:
1、电解电容:多数在1μF以上,直接用数字表示。如:47μF、100μF、220μF等等。这种电容的两极有正负之分,长脚是正极。
2、瓷片电容:多数在1μF以下,直接用数字表示。如:10、22、0047、01等等,这里要注意的是单位。凡用整数表示的,单位默认pF;凡用小数表示的,单位默认μF。如以上例子中,分别是10P、22P、0047μF、220μF等。
现在国际上流行另一种类似色环电阻的表示方法(单位默认pF):
如:“473”即47000pF=0047μF
“103”即10000pF=001μF等等,
“XXX”第一、二个数字是有效数字,第三个数字代表后面添加0的个数。这种表示法已经相当普遍。
1、直标法用数字和单位符号直接标出。如01uF表示001微法,有些电容用“R”表示小数点,如R56表示056微法。
2、文字符号法用数字和文字符号有规律的组合来表示容量。如p10表示01pF,1p0表示1pF,6P8表示68pF,2u2表示22uF
3、色标法用色环或色点表示电容器的主要参数。电容器的色标法与电阻相同。
电容器偏差标志符号:+100%-0--H、+100%-10%--R、+50%-10%--T、+30%-10%--Q、+50%-20%--S、+80%-20%--Z。
电容器容量的基本单位是“法拉”(F),1法拉的1/1000000(百万分之一)是1微法(μF),1微法的1/1000000是1pF(1微微法,或1皮法)。它们之间的关系是百万(或称10的6次方)进位关系。我们常用的电容有:
电解电容多数在1μF以上,直接用数字表示。如:47μF、100μF、220μF等等。这种电容的两极有正负之分,长脚是正极。
瓷片电容:多数在1μF以下,直接用数字表示。如:10、22、0047、01等等,这里要注意的是单位。凡用整数表示的,单位默认pF;凡用小数表示的,单位默认μF。如以上例子中,分别是10P、22P、0047μF、01μF等。
把“色环表示法”用到电容上来:这又是一种巧妙的演绎!我们在一些瓷片电容上往往看到这样的标记:“103”,“104”,“473”等,这里,第三个数字(个位数字)并非通常理解的个位数,它和四色环电阻的第三环一样,告诉人们前两位数字后面“添加零的个数”;这样,103就是10000,104就是100000,473就是47000,单位默认pF。换算一下,103=001uF,104=01uF,473=0047uF。
诚心的书本
2025-12-05 08:21:20
本公司除了提供性能卓越的射频RF 元器件外,还致力於为客户提供精确和完整的性3 y) i" F! z; B能资料。为了达到这个目标,这篇文章裏我们详细的讨论Q和ESR的测量方法和理解。2 _3 P9 K1 N+ P$ @$ M7 I理论上,一个“完美”的电容器应该表现为ESR为零欧姆、纯容抗性的无阻抗元件。不论$ H$ ~3 d6 d l6 m/ B/ p何种频率,电流通过电容时都会比电压提前正好90度的相位。 d p& Z7 P, \" @) v8 m实际上,电容是不完美的,会或多或少存在一定值的ESR。一个特定电容的ESR随著频率# i% ]: R z w8 x的变化而变化,并且是有等式关系的。这是由於ESR的来源是导电电极结构的特性和绝缘介质1 F" E2 Y# y% }的结构特性。为了模型化分析,把ESR当成单个的串联寄生元。过去,所有的电容参数都是在2 @4 u5 G( b4 ^0 V% r- T1MHz的标准频率下测得,但当今是一个更高频的世界,1MHz的条件是远远不够的。一个性能/ y; V9 \) b; d" D/ u优秀的高频电容给出的典型参数值应该为:200MHz ,ESR=004Ω;900MHz, ESR=010Ω;! d" r- e" [3 e) p" J$ d2000MHz,ESR=013Ω。& n, m" v) s, [, N$ Q- w8 w: |Q值是一个无量纲数,数值上等於电容的电抗除以寄生电阻(ESR)。Q 值随频率变化而有5 H3 p) T- ^" Q3 W; r很大的变化,这是由於电抗和电阻都随著频率而变。频率或者容量的改变会使电抗有著非常大& f" p$ `0 y# }2 H" B# I% E5 ^9 y的变化,因此Q值也会跟著发生很大的变化。从公式一和二上可以体现出来:3 e3 N/ @, q+ w6 R公式一:|Z| = 1 / ( 2πf C)/ S6 n _1 p: ]# @2 W7 g5 W其中,|Z|为电抗的绝对值,单位Ω;f为频率,单位Hz;C为容量,单位元F。! A+ n8 {4 r$ m3 R公式二:Q = |Z| / ESR9 Y2 f2 E0 O" S% }2 k4 r; T, D其中,Q代表“品质因素”,无量纲;|Z|为电抗的绝对值,单位Ω;ESR为等效串联电阻, L! _4 ~5 K7 R3 e% A; R单位Ω。+ X( @4 X/ ]& G! o$ E% u3 q用从向量网路分析器收集而得的S参数去推导ESR是不可信的。主要原因是这个资料的精3 [ t6 z {8 `# ]度受限於网路分析器在50Ω系统中的精度(典型的± 005 dB测量精度在电容低到±001 dB {8 F# T3 l0 C低损耗区是精度不足的)。同样,用LCR仪表去测量高Q器件的Q和ESR也是不可信的。这是- R8 ]; s E p# R8 p( C! I由於当元件的Q 值非常高时,LCR 仪表不能正确地分辨出非常小的电阻(R)和非常大的电抗; L& a" s! @+ C(Z)。因此,高Q电容器的ESR和Q的测量方法,一般使用作为行业标准的谐振线路测试法。2 i0 l" v+ i9 ^; U" @ J2 |这种测试方法作为在射频RF上测量Q和ESR 的行业标准而长期存在。因为该方法依赖於 N8 |/ Q" o }, j% r信号发生器的频率精确度(该频率可以非常精确的测量),所以该资料的采样方式是十分精确& U% `, D0 L j1 ^的。现代的电容ESR非常之小,以至於这个测量方法的精度也只能达到接近±10%。但不管如% u+ k& S8 q4 t4 Z E8 X; r9 O e何,这仍然是目前最精确的在射频RF方面有效测量Q和ESR的方法。0 v" Q0 Y6 \8 X7 j, J( S+ y" E测试方式:8 t- : o/ f$ w" [ 频率发生器 电脑 毫伏表" Y W) E j( [: m9 v2 j" Y 同轴谐振器2 T6 x2 z) T) L9 Y F$ t$ I5 W! L- w2 Q5 s4 K如何理解贴片陶瓷电容器的介质强度8 h J/ v: V# ]$ \7 { 介质强度表徵的是介质材料承受高强度电场作用而不被电击穿的能力,通常用伏特/密尔( p1 Y u Q" Z T3 g/ F0 l i# F(V/mil)或伏特/釐米(V/cm)表示。" M O- ` x, w! ]5 r当外电场强度达到某一临界值时,材料晶体点阵中的电子克服电荷恢复力的束缚并出现场( S2 l! s G J, P" H致电子发射,产生出足够多的自由电子相互碰撞导致雪崩效应,进而导致突发击穿电流击穿介6 A$ o r" Z9 f! t6 S C7 y# m质,使其失效。除此之外,介质失效还有另一种模式,高压负荷下产生的热量会使介质材料的+ z7 J1 ~/ A& Y0 P0 O5 J8 Z; o电阻率降低到某一程度,如果在这个程度上延续足够长的时间,将会在介质最薄弱的部位上产2 O: G E4 c2 Z3 a i1 C: B生漏电流。这种模式与温度密切相关,介质强度随温度提高而下降。
傻傻的手机
2025-12-05 08:21:20
瓷片电容的容量识别方法(根据标识计算电容容量的方法)如下:
瓷片电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。
电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法 (μF)/mju:/、纳法(nF)、皮法(pF)。其中:1法拉=1000毫法(mF),1毫法=1000微法(μF),1微法=1000纳法 (nF),1纳法=1000皮法(pF)
1、容量大的电容其容量值在电容上直接标明,如10 μF/16V;
2、容量小的电容其容量值在电容上用字母表示或数字表示;
字母表示法:
1m=1000μF
1P=1pF(如470P=470pF)
1P2=12PF
1n=1000PF;
数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数字,第三位数字表示有效数字后面零的个数,它们的单位都是pF。
如:
102表示标称容量为10×10²pF=1000pF;
104表示标称容量为10×(10^4)pF=100000pF;
470表示标称容量为47pF;
223表示标称容量为(22×(10^3))pF(即22000pF)。
在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数字乘上10的-1次方来表示容量大小。
如:229表示标称容量为22x10^(-1)pF=22pF。
电容(电容器),(Capacitor)电路缩写为C,电容单位法拉,用字母“F”表示电容是用来储存电荷的容器,简称电容器电容器是一种储能元件,在电路中用于调谐、滤波、耦合、旁路、能量转换和延时
电容器是由两片相距很近的金属中间用某介质(固、液、气体)隔离而构成的金属板也叫电容极板按其结构可分为固定电容器、半可变电容器、可变电容器三种
1. 常用电容的结构和特点
常用的电容器按其介质材料可分为电解电容器、云母电容器、瓷介电容器、玻璃釉电容等
其在电路中的符号表示:
作用是:1、存储电荷 2、隔直通交 3、滤波 4、耦合 5、旁路 等等
存储电荷:平时我们照相机的闪光灯,就是电容器储积电荷然后在一瞬间释放出来
滤波:电容器对电波或电磁波、信号等起过滤作用
电容的种类有很多,可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上可以分为:CBB电容(聚乙烯)、聚丙稀电容、涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等使用电容还有一个指标,那就用多大的容量,这就涉及到额定值读数了电解电容很容易读数,直接在上面看厂商标出容量和负极性,工作环境,最高工作电压值瓷片电容就比较难一点小于100P会标出多少P当标值为474时首先知道第一、二位是有效数值,如上例中的47,第三位代表10的指数(简单地说就是在前面两位数后面补几个0) ,如上例中的4那么474表示47×10000=470000PF
电容的单位法拉(F),法拉这个单位很大很大我们很少用到,常用的是微法(UF)、皮法(pF)它们之间的转换为:1F=1000000 uF 1uF= 1000000 pF上面所提到的474就等于047uF
二、电容器检测的一般方法
1固定电容器的检测
A检测10pF以下的小电容 因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿
B检测10PF~001μF固定电容器是否有充电现象,进而判断其好坏万用表选用R×1k挡两只三极管的β值均为100以上,且穿透电流要小可选用3DG6等型号硅三极管组成复合管万用表的红和黑表笔分别与复合管的发射极e和集电极c相接由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动C对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量
2电解电容器的检测
A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程根据经验,一般情况下,47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量
B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用
C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极
D使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量
3可变电容器的检测
A用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象
B用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象转轴与动片之间接触不良的可变电容器,是不能再继续使用的
C将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象