建材秒知道
登录
建材号 > 瓷片 > 正文

超声波换能器的常见问题

整齐的发夹
糊涂的学姐
2023-04-26 02:02:41

超声波换能器的常见问题

最佳答案
精明的石头
清秀的西牛
2026-02-13 16:37:14

 一、超声波换能器使用中的常见问题

超声波焊接有超声波金属焊接和超声波塑料焊接两大类。其中超声波塑料焊接技术已获得较为普遍的应用。它是利用换能器产生的超声振动, 通过上焊件把超声振动能量传送到焊区。由于焊区即两焊件交界处声阻大, 所以会产生局部高温使塑料熔化, 在接触压力的作用下完成焊接工作。超声塑料焊接可方便焊接其他焊接法无法焊接的部位。另外, 还节约了塑料制品昂贵的模具费, 缩短了加工时间, 提高了生产效率, 有经济、快速和可靠等特点。

常见的问题

1、超声波换能器的晶片开裂、无力、易过载、电极片打火、电极片开裂、发热严重、怪声、漏波、晶片错位等

出现这类情况大致由于以下3种原因导致的

第一、超声波发生器(超声波电源或超声波电箱)或模具(超声波焊头/焊头)及装配有问题。

解决办法:检查这些部件安装是否存在问题,如果还是找不到原因,可以联系我们在线技术人员帮你解答,排查并解决问题。

第二、换能器、增幅器有问题。

解决办法:这种情况发生的可能性比较小,但是也会发生,

第三、双方的产品都没有问题,电容量和频率不匹配。

这是最常见的情况,若输入匹配不好,则表现为换能器无力,焊不牢。会造成换能器会过载,导致晶片错位开裂,破碎,螺杆断,铝裂或烧电箱功率管等情况。不过现在超声波设备都安装了自动检测,和过载保护报警装置,能有效的防止设备损坏的可能性。

解决办法:必须配置同频率超声波发生器、换能器、焊头在一起使用。

2、换能器无力,焊不牢;重者换能器发热严重

如前所述 因为陶瓷片是绝缘体,你几乎可以理解为换能器是不通电的,它只是相当于一个电容器。要使换能器工作,实际上是通过驱动电路对它施加交流高电压,让换能器的电容充放电。压电陶瓷片在交变电场的作用下做同步伸缩变形,形成了整个换能器的纵向振动,从而带动变幅杆和模具振动。所以,若电容匹配不好,轻者是换能器无力,焊不牢;重者换能器发热严重,烧电极片、烧电源的大功率管。

解决办法:匹配好电容

3、换能器电极片(耳朵)振裂或烧掉

而且随着长时间连续工作,换能器的温度会升高,导致电容也会升高且变化量可能会超过 50% ,若不能将电容有效地匹配掉,就会造成回路中电流电压相位差很大,功率因素很低,虚功高。看看电流很大,但换能器没力,易发热,且电源的功率器件也容易发热损坏。一般换能器电极片(耳朵)振裂或烧掉很可能就是由此引起的。

解决办法:暂停使用,等到设备冷却后在开机工作,一般不是连续发震,超负荷工作的这种情况出现的比较少。

一、超声波换能器工作原理

    超声波换能器又叫超声波振子,将超声波发生器输出的电能或者磁能转换成相同频率的机械振动,超声焊接机用的换能器,目前有两种,第一种是,磁致伸缩型换能器,第二种是压电陶瓷换能器。第一种由于效率低,性价比低,还需外加直流极化磁场,因此目前超声焊接机已经很少使用。

    现在超声波焊接机设备大多采用的是第二种压电陶瓷换能器。由材料的压电效应将电信号转换为机械振动。医用超声换能器(超声探头)的工作原理大体是相同的,其内部通常都包含一个电的储能元件和一个机械振动系统。当换能器用作发射器时,从激励电源送来的电振荡信号将引起换能器中电储能元件中电场或磁场的变化,这种变化通过某种效应对换能器的机械振动系统产生一个推动力,使其进入振动状态,从而推动与换能器机械振动系统相接触的介质发生振动,向介质中辐射声波。接收声波的过程正好与此相反,外来声波作用在换能器的振动面上,从而使换能器的机械振动系统发生振动,借助某种物理效应,引起换能器储能元件中的电场或磁场发生相应的变化,从而引起换能器的电输出端产生一个相应于声信号的电压和电流。

最新回答
淡然的魔镜
标致的发夹
2026-02-13 16:37:14

你说的当然是这样的!吉他加装拾音器,就是将吉他琴弦振动的机械能量,通过压电陶瓷片换能振子,转化为电信号,再通过调音器,功放板,从音箱里发出电吉他的效果。
不接喇叭,怎么叫电吉他!

尊敬的未来
敏感的硬币
2026-02-13 16:37:14
超声波传感器的工作原理:
超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中辐射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测而实际使用中,用作发送传感器的陶瓷振子也可以用作接收器传感器社的陶瓷振子。控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。
简介:
超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好,能够成为射线而定向传播等特点。超声波传感器可以对集装箱状态进行探测,可以应用于食品加工厂,实现塑料包装检测的闭环控制系统。超声波传感器对透明或有色物体,金属或非金属物体,固体、液体、粉状物质均能检测。
主要应用:
超声波传感技术应用在生产实践的不同方面,而医学应用是其最主要的应用之一,下面以医学为例子说明超声波传感技术的应用。超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。因而推广容易,受到医务工作者和患者的欢迎。超声波诊断可以基于不同的医学原理,我们来看看其中有代表性的一种所谓的A型方法。这个方法是利用超声波的反射。当超声波在人体组织中传播遇到两层声阻抗不同的介质界面时,在该界面就产生反射回声。每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的振幅的高低。
在工业方面,超声波的典型应用是对金属的无损探伤和超声波测厚两种。过去,许多技术因为无法探测到物体组织内部而受到阻碍,超声波传感技术的出现改变了这种状况。当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。在未来的应用中,超声波将与信息技术、新材料技术结合起来,将出现更多的智能化、高灵敏度的超声波传感器。
超声波对液体、固体的穿透本领很大,尤其是在不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。
超声波距离传感器可以广泛应用在物位(液位)监测,机器人防撞,各种超声波接近开关,以及防盗报警等相关领域,工作可靠,安装方便, 防水型,发射夹角较小,灵敏度高,方便与工业显示仪表连接,也提供发射夹角较大的探头。