建材秒知道
登录
建材号 > 瓷片 > 正文

用面包板做电路实验

怕黑的金针菇
畅快的大门
2023-04-26 01:56:25

用面包板做电路实验

最佳答案
冷艳的天空
直率的犀牛
2026-02-13 17:53:43

面包板做实验,就是按电路图正确的插上原件,并连上电源即可。但这有个条件,相关的电子元件的作用、原理、基础电路等。有了电脑网络,它带给人的方便,快捷。学习方法可以灵活多样,首先选一本基础的书,也可以从网络下载,这个可以使学习有个循序渐进的顺序。同时更重要的是实践,这个实践,可以是实物,也可以仿真,当然仿真更理想,一个是节约成本,另一个简单易行,当然最好两者皆有。一、什么是"面包板"?1、面包板的构造 面包板即"集成电路实验板",就是一种插件板,此"板"上具有若干小型"插座(孔)".在进行电路实验时,可以根据电路连接要求,在相应孔内插入电子元器件的引脚以及导线等,使其与孔内弹性接触簧片接触,由此连接成所需的实验电路。图1为SYB—118为4行59列,每条金属簧片上有5个插孔,因此插入这5个孔内的导线就被金属簧片连接在一起。簧片之间在电气上彼此绝缘。插孔间及簧片间的距离均与双列直插式(DIP)集成电路管脚的标准间距254mm相同,因而适于插入各种数字集成电路。2面包板使用注意事项插入面包板上孔内引脚或导线铜芯直径为04~06mm,即比大头针的直径略微细一点。元器件引脚或导线头要沿面包板的板面垂直方向插入方孔,应能感觉到有轻微、均匀的摩擦阻力,在面包板倒置时,元器件应能被簧片夹住而不脱落。面包板应该在通风、干燥处存放,特别要避免被电池漏出的电解液所腐蚀。要保持面包板清洁,焊接过的元器件不要插在面包板上。 3面包板实验套材电子控制电路基本实验所用的元器件包括:电池组2组(3V、6V,带电池卡、电极引线)。面包板(SYB-130或118、SYB—46型)。电阻器27只(47Ω、100Ω、390Ω×8、1kΩ×6、22kΩ×5、33kΩ、10kΩ、15kΩ、47kΩ、330kΩ、22MΩ),小型直滑电位器(47kΩ),电容器7只(1000pF、0022μF、47μF、100μF×2,220μF×2)。光敏电阻器(MG45-1),光电二极管,开关二极管(1N4148),发光二极管4只(红、绿、黄、橙),三极管4只(8050、9013×2、9014),数码管(LC5011)。数字集成电1块(74LS00、74LS02、74LS04、74LS08、74LS32、74LS73、74LS74、74LS86、4511、4518)。继电器(JRC-21F),双金属复片(启辉器),磁控开关1套(条形铁、干簧管开关),压电陶瓷片(φ27mm,带共鸣壳体),电子蜂鸣器(3V或6V),小电灯1个(38V),玩具直流电动机(3V,带小螺旋桨)。接钮开关2个,导线若干和元器盘。此外,还需要准备常用的工具,如镊子、桃形钳和一字小改锥,自选实验所需添加的一些元器件等。 二、面包板实验入门 实验是通向科学成功的桥梁,正是由于实验造就了19世纪最伟大的实验物理学家、实验大师M·法拉第,为近代物理的发展奠定了基础。在了解面包板的构造之后,通过面包板电路搭接实验来了解其使用的方法。 1省电指示灯电路2为省电指示灯电路: 它由电池组GB(6V)、按钮开关SB、限流电阻器R(390Ω)、红色发光二极管和导线组成。电池组用4节5号电池串联而成,开关选用电铃按钮开关,接线用1芯导线,电阻器上面的四条色环为橙色、白色、棕色及金色,标称阻值为390Ω,允许偏差±5 %。发光二极管采用直径3mm的红色发光二极管。限流电阻器R为390Ω时,发光二极管中电流约10mA,亮度已经很高了。如用高亮度发光二极管,限流电阻器可以适当加大(1k~39kΩ),工作电流仅为1~3mA,成为名副其实的省电指示灯电路。2省电指示灯电路很简单,在面包板上搭接电路却是新的尝试,需要掌握在面包板上连接电路的方法,了解电阻器和发光二极管的使用方法,迈出面包板电路实验的第一步。建议初学者使用SYB—46型面包板,示范连接方法进行实验。常见的错误是把电阻器、发光二极管的两条管脚插在同一列的5个方孔内造成短路,或者发光二极管正负极管脚接反。 在初步掌握省电指示灯电路面包板连接后,不妨在电路中再串联一只发光二极管,所示的两种不同的串联方法。注意:这两个电路的区别!

最新回答
壮观的黑夜
落后的超短裙
2026-02-13 17:53:43

这个用超声波传感器是无能为力的,超声波传感器的原理是:传感器发射出超声波,超声波碰到物体(被测物)后反射回来,超声波传感器再接收这个超声波信号,计算从发出到接收的时间差,利用 声速×时间÷2 的原理判断出距离。超声波传感器的输出分为开关量信号(高低电平)和模拟量信号(0-10V或4-20mA与测得距离成正比,距离范围是先设定好的)。
具体到你这个案例,不知道该用什么传感器去采集电流信号,但超声波是不能的。

贤惠的毛巾
大力的路灯
2026-02-13 17:53:43
不好意思,答题答岔了这个我有Word版的,怎么给你。设计题目 电子技术课程设计摘要模拟电子技术设计是基于所学习的波形发生电路来设计波形发生器,用以实现产生占空比可调的矩形波和锯齿波。数字电子技术设计是运用触发器和逻辑门电路来实现异步加法十进制计数器。自制电路设计是运用所学习的知识来自行设计一个有实际意义的电路。在运用protel技术进行画图以及仿真。Protel是目前国内最流行的通用EDA软件,它将电路原理图设计、PCB板图设计、电路仿真和PLD设计等多个实用工具组合起来构成EDA工作平台,是第1个将EDA软件设计成基于Windows的普及型产品。与Protel 99SE软件相比,Protel DXP功能更加完备、风格更加成熟,并且界面更加灵活,尤其在仿真和PLD电路设计方面有了重大改进。摆脱了Protel前期版本基于PCB设计的产品定位,显露出一个普及型全线EDA产品崭新的面貌。关键词: 波形发生器,触发器,三极管,protel,仿真目录1模拟电子技术实验………………………………………………………………(4)11实验积分电路………………………………………………………………(4)12集成电路RC正弦波振荡器…………………………………………………(5)13模仿设计波形发生器………………………………………………………(7)2 综合部分………………………………………………………………………(10)21设计题目…………………………………………………………………(10)22设计任务…………………………………………………………………(10)23设计要求…………………………………………………………………(10)24总体设计及原理图………………………………………………………(10)25元器件选择……………………………………………………………… (14)26使用说明…………………………………………………………………(15)3设计总结………………………………………………………………………(17)4 参考文献………………………………………………………………………(17)1 模拟电子技术实验11实验一:积分电路实验内容:积分电路的验证实验目的:1学会用运算放大器组成积分微分电路。2学会积分微分电路的特点及性能。实验仪器设备:模拟电子实验箱 信号发生器 双踪示波器 数字万用表实验原理:电容两端的电压与 流过电容的电流 之间存在积分关系,即,uC= 用理想运放工作在线性区时“虚短”和“虚断”的特点,输入电压 通过电阻 加在集成运放的反相输入端,并在输出端和反相输入端之间通过电容C引回一个深度负反馈,即可组成基本微分电路。为了使集成运放两个输入端对地的电阻平衡使同相输入的电阻为 。由于“虚地”故 ,又由于“虚断“,运放反相输入端的电流为零,则 ,故 即 , 为积分时间常数,如果在开始积分之前,电容两端已经存在一个初始电压,则积分电路将有一个初始的输出电压 ,此时原理及接线图图1—1 积分电路实验步骤:使图中积分电容改为01 ,断开K, i分别输入1000HZ幅值为2V的方波和正弦波信号,观察Vi和Vo大小及相互关系,并记录波形。实验结果(数据及结论)测量值 正弦波 Ui=2048 Uo=3284方波 Ui=2035 Uo=2544输出输入的波形(一) 结果及结果分析①方波:图 (1)示波器输出的方波图形 见图 (1)理论值=29175VUo的相位比Ui的相位领先 ,故积分电路起着移相位的作用。在 时,UI=2029VUo=-1000Ui tT=0005s时Uo=-10145V在5<t 时,Ui=-2029VUo=1000Ui(t-0005)+Uo(0)积分电路起着改变波形的作用问题讨论:如果在示波器显示出的波形不稳,可以调节示波器上的LEVEL按钮12实验二集成电路RC正弦波振荡器实验内容:RC正弦波振荡周期器电路实验目的:1掌握RC正弦波振荡器的电路构成及工作原理。2熟悉正弦波振荡器的调整,测试方法。3观察RC参数对振荡频率的影响,学习振荡频率的测定方法。实验仪器 设备:双踪示波器 低频信号发生器 频率计简单原理:集成运放A为放大电路,RC串并联网络时选频网络,而当 时,它是一个接成正反馈的反馈网络。电路的振荡频率为 参应满足 ,改变R或C的值,即可调节振荡频率。原理图及接线图图1—2 RC震荡电路实验步骤:1按上图1—2接线注意电阻 需先调好再接入2用示波器观察输出波形,读出f值3用频率计测上述电路的输出频率,将信号发生器的计数输入接到电路的输出端(选择外接信号)计数20dB外测要按下4进行理论计算,将上述三种方法的频率值进行比较实验结果(数据及结论)13实验三 模仿设计波形发生器实验内容:设计方波、三角波发生器实验目的:1了解集成运放在波形发生电路的作用2设计三角波电路3熟悉波形发生电路的特点和分析方法实验仪器,设备:双踪示波器 数字万用表 模拟电子实验箱简单原理:1、方波发生器:假设T=0时电容C上的电压UC=0,而滞回比较器的输出端为高电平,即U0=+UZ。则集成运放同相输入端的电压为输出电压在电阻R1,R2上分压的结果,即U+=(R1/R1+R2)UZ此时输出电压+UZ将通过电阻R向电容C充电,使电容两端的电压UC升高,而此电容上的电压接到集成运放的反相输入锻,即U-=UC 。当电容上的电压上升到U-=U+时,滞回比较器的输出端将发生跳变,由高电平跳变为低电平,是U0=-UZ ,于是集成运放同相输入端的电压也立即变为U+=-(R1/R1+R2)UZ 输出电压变为低电平后,电容C将通过R放电,使UC 逐渐降低。当电容上电压降低到U-=U+时,滞回比较器的输出端将再次发生跳变,由低电平跳变为高电平,既U0=+UZ 。以后又重复上述过程。于是产生了正负交替的方波。2、三角波发生器:由集成运放A1组成滞回比较器,A2组成积分电路。假设t=0时积分电容的初始电压为零,而滞回比较器输出端为高电平,即 经积分 将随时间往负方向增长,则 减小,当减小至 时,滞回比较器的输出端将发生跳变,使 由 跳变为 ,此时 也将跳变成一个负值,当 时,积分电路的输出电压 将随时间往正方向现行增长, 将随之逐渐增大,当增大至时,滞回比较傲气的输出端再次发生跳变, 由 跳变为,以后重复上述过程,于是滞回比较器的输出电压成为周而复始的矩形波,而积分电路的输出电压 也成为周期性的三角波原理图和接线图图1—3 方波发生电路图1—4三角波发生电路实验步骤 1根据方波、三角波发生电路原理设计电路2按设计电路图接线,分别观测输入及输出的波形并记录实验结果(数据接结论)图 (2)示波器输出的方波图形 见图 (2)图 (3)示波器输出的三角波形图 见图(3)2 综合部分21设计题目:节拍器电路的设计22设计任务:设计一个简易的节拍电路,该电路能输出不同的声音及拍子,用两个显示灯表示节奏的快慢及其比例,也能测试一些放大电路的故障与否。23设计要求:⑴要求有一开关闭合后,两个灯闪烁,即可以显示电路工作正常。⑵要求电路可以测试收音、录音、电视机、音响及其他放大电路是否有故障,如有故障,则可以测试出故障点在什么位置。⑶要求接入收音、录音、音响等,可产生六种节拍音出现,并有声光显示,并且节拍速度快慢可变,节拍快慢的比例可变,输出音量大小可变。⑷根据上述要求,画出原理图,写出工作原理,并列出所有的设计过程。24 电路工作原理整机电路图如图2-1所示。他由低频振荡器、八进制计数器/分配器、方波振荡器、反相器、驱动器、光声响器等部分组成。IC1的⑧脚供电电源是由三机关VT1、稳压二极管VD1、电容C2等元器件组成的7V稳压电源提供的。图2-1是用通用型555时基电路构成的典型低频振荡电路。当电源接通时,VCC通过电位器RP1、RP3和电阻R3、R4向电容C3充电。当电容C3开始充电瞬间,由于IC1的②脚电位上升到VC2≥2/3VCC时,输出端③脚由高电平变为低电平;IC1内部的放电管道通,电容C3重新充电。如吃周而复始,形成振荡。电路振荡周期为T=07(RP1+RP3+R3+2R4)C3。改变RP1、RP3和C3的参数,即可改变其振荡频率。其中,RP1、RP2及电阻R2构成分压电路,以保证IC1的②、⑥脚所需的充电电平。IC1的③脚有两路输出:一路由三极管VT5组成的快拍电平转换电路,经A1、A2反相器,送入由二极管VD6、VD7构成的或门电路,又经过A5、A6反相器,通过分压电位器RP4送给三极管VT8放大,驱动蜂鸣器BL发出快节奏的节拍声。另一路经三极管VT2放大,其集电极输出一部分信号由三极管VT3进一步放大,使发光二极管VD3随着快节奏的蜂鸣声而同步闪烁绿光;VT2集电极输出的另一部分信号给由IC2构成的计数/分配器作为时钟输入,由选择开关S2作为IC2的输出,以作为六种模拟数据选择器,通过IC2的①脚输出不同的脉宽,由三极管VT6射极输出去控制由三极管VT7集电极输出方波信号,使之形成慢节拍,并通过活门电路中的二极管VD6,经反相器A5、A6去驱动三极管VT8使发出慢节奏的蜂鸣声。此时,IC2的②脚出现有规律的忽高忽低电平,使三极管VT4在导通、截止两种状态间交替转换,而发光二极管VD4将随着慢节奏的蜂鸣声而同步闪动着红色的光亮。这样,选择开关S2置于不同的档位,蜂鸣器BL将发出有比例的快,慢节拍声,发光二极管VD3、VD4也跟随闪着有比例的红、绿色的闪光信号。其中,三极管VT6为射极输出器,其特点为输入阻抗高,输出阻抗低,起着良好的阻抗匹配和隔离作用,使前后级不至于互相影响而稳定地工作。电阻R26既为三极管VT8提供基极电流,尤其到了电压并联负反馈的作用,使输出电压更稳定。图2—1 节拍器原理图图2-1中A3、A4是用CMOS与非门构成的典型的放泊振荡电路。当反相器A4输出正跳变时,电容C11立即使A3输入为“1”,输出为“0”,电阻R20为C11提供放电通路。当C11放电达到A3的转折点压时(为1/2电源电压),A3输出变为“1”,A4输出变为“0”。电阻R20连接在A3的输出端对C11反方向充电。当充电到A3的转折电压时,A3输出变为“0”,A4输出变为“1”,于是形成了周期性的多谐振荡,其振荡周期T=22R20C11。电阻R19时反相器输入端的保护电阻,接入与否并不影响振荡频率。IC2为八进制计数/分配器。它是由约翰逊计数器和译码器两部分组成。它有三个输入端(复位端R、时钟端CP和CPE)和八个译码输出端Q0—Q7。在复位状态时,只有Q0为高电平“1”状态,其他输出端均为低电平“0”状态。当有脉冲输入时,输出端一次变为高电平“1”状态,Q0端变为低电平“0”状态。另外设有仅为输出端CO,可作为级联时使用。A1—A6为六个反相器。反相器是执行逻辑反向功能的电路,其逻辑关系特点是:当输入端为低电平“0”状态时,输出端为高电平“1”状态;当输入端为高电平“1”状态时,输出端为低电平“0”状态。图2-2 NE555内部原理图555电路的内部电路方框图如图2-2所示。它含有两个电压比较器,一个基本RS触发器,一个放电开关T,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使高电平比较器A1同相比较端和低电平比较器A2的反相输入端的参考电平为 和 。A1和A2的输出端控制RS触发器状态和放电管开关状态。当输入信号输入并超过 时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于 时,触发器置位,555的3脚输出高电平,同时放电,开关管截止。是复位端,当其为0时,555输出低电平。平时该端开路或接VCC。Vc是控制电压端(5脚),平时输出 作为比较器A1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个001uf的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。T为放电管,当T导通时,将给接于脚7的电容器提供低阻放电电路。25元器件选择:三极管VT1—VT7选用9013,β为80—150,VT8选用8050。时基集成电路IC1可选用NE555、LM555或国产的5G1555。NE555为八脚双列直插式排列见图2—3。八进制计数/分配集成电路IC2为MC14022,可用CD4022或国产CC4022直接代换。MC14022为十六脚双列直插式封装,其外形及管脚排列见图2—4。六反相器集成电路A1—A6为MC14069,可用CD4069或者国产的CC4069直接代换。MC14069的外形及管脚排列如图2—5所示。电位器RP1选用WH5-10K-X-05W。RP3为WH125-22K-X-05W。压电陶瓷蜂鸣片BL采用HTD-27A。变压器T选晶体管输出变压器代用。开关S1型号为KND-2W1D。S2为KB-8W2D。S3为KND-2W2D。电源GB选用6F22-DC9V层叠电池。电阻均为1/8WRJ电阻。其他元件按图2—1标注选用,无特殊要求。26使用说明:⑴将电源开关S1逼和,便有红、绿灯闪烁只是,表示本机工作正常。⑵测试收音、录音、电视机、音响及其他发达电路故障时,断开开关S3,将黑夹子连线插入装置的电源负极上,并将黑夹子接入被测地端;红夹子连线插入装置的“A”端上,红夹子便可作为信号送入故障电路的输入级。探针(可用万用表中的一只表笔)连接线插入装置的“B”端,然后用探针测试电路各输出端,碰到某一级时必须有声,否则,该电路部分就是故障点(不检测故障点时,开关S3需闭合)。⑶配上输出插头,介入收音、收录、音响等,便可有六种节拍音的出现,并有声光显示。调节电位器RP1,可改变节拍速度的快慢。调节选择开关S2,可改变其节奏快慢的比例。调节电位器RP4,可改变音量的大小。⑷选择开关S2的使用方法具体如下。①将S2置于“1”档时,蜂鸣片BL发出快节奏的单音,绿色发光二极管VD3随之同步闪光。②将S2置于“2”档时,蜂鸣片BL发出快慢节奏的双音,绿、红发光二极管随之同步闪光,其比例为1:1。③将S2置于“3”档时,蜂鸣片BL发出快慢节奏的双音,绿、红发光二极管随之同步闪光,其比例为2:1。④将S2置于“4”档时,蜂鸣片BL发出快慢节奏的双音,绿、红发光二极管随之同步闪光,其比例为3:1。⑤将S2置于“5”档时,蜂鸣片BL发出快慢节奏的双音,绿、红发光二极管随之同步闪光,其比例为4:1。⑥将S2置于“6”档时,蜂鸣片BL发出快慢节奏的双音,绿、红发光二极管随之同步闪光,其比例为6:1。⑸若配上一只8Ω低阻耳塞,插头插入输出插座XSzhong,调节嘀嗒速度RP1或选择开关S2,对患有精神衰弱的人有明显的催眠效果,并能抑制多梦症。⑹若不需要携带时,可配上一个9V的稳压电源供电,这样较为经济且使用时间长久。3设计总结通过这次电子技术课程设计,让我了解了设计电路的程序通过本次实验设计电路原理图,对protel99se有了初步的了解,能独立完成电路图的绘制,在设计电路图过程中充分了解各芯片和元器件的功能作用。通过这次电子技术课程设计,使我对模拟电子技术和数字电子技术在实践中的应用有了更深刻的理解。通过该课程设计,把板的课本知识变得生动有趣,激发了学习的积极性。通过这次学习,让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解。4参考文献[1] 沈阳理工大学信息科学与技术学院 马东、丁国华编《模拟电子技术试验指导书》[2] 沈阳理工大学信息学院数字电子实验室 张丽萍,王向磊编《数字逻辑实验指导书》[3]清华大学电子学教研组 余孟尝主编《数字电子技术基础》 (第三版) 高等教育出版社,2006[4] 清华大学电子学教研组 杨素行主编《模拟电子技术基础》 (第三版) 高等教育出版社,2006[5] 人民邮电出版社 杨帮文编《实用电子小制作精选》

现代的长颈鹿
懵懂的白猫
2026-02-13 17:53:43
常见的遥控电路一般有如下几种类型:声控、光控、无线电遥控等等。
遥控电路的控制原理
声控就是用声音去控制对象动作,一般采用驻极体话筒或压电陶瓷片作为传感元件来拾取声音,通过电路放大驱动后级电子开关动作。为防止外界音频干扰,可以采用超声波控制,但也有故意选用声频来进行控制的,比如用小孩发出的声音频率去控制声控玩具娃娃的哭笑动作等。
简单的单通道光控电路是利用光敏管受光以后内阻发生变化使电子开关的状态发生变化,传感器有光敏二极管、光敏三极管、光敏电阻、光敏电池等等(早期生产的玻璃壳封制晶体管,刮掉外面黑色遮光油漆后就是一个不错的光敏管。)。这个光源既可以是可见光,也可以是红外线等不可见光源,不同的光敏元件有着不同的光谱。复杂一些的光控电路则能够完成多通道开关或模拟量变化控制,应用极其广泛,可以说家家都有。因为带遥控的电视机、功放音响、VCD录像机等家用电器的遥控器都是利用红外线光源进行遥控的典例。上海现在有许多居民楼的走廊照明灯都采用了光控与声控相结合的电路,利用路过的人发出的脚步声、谈话声或其他声音去触发照明灯的声控电子开关,用光控电路使得照明灯在白天自动关闭停止响应。
无线电遥控电路比起声控或光控电路复杂多了,但控制距离也更远是它的主要特点,光控、声控电路一般仅有几米到十几米的作用距离,而无线电遥控视不同的应用场合近可以是零点几米,远则可以超越地球到达太空!它由发射电路和接收电路2部分组成,当接收机收到发射机发出的无线电波以后驱动电子开关电路工作。所以它的发射频率与接收频率必须是完全相同的。根据其发射的高频波形有等幅、调幅、调频、数字脉冲发射机,根据其控制的开关数目有单通道遥控和多通道遥控等。
无线电遥控原理和特点
等幅发射只能用于单通道控制,线路简单发射效率高但是抗干扰性极差。用固定的音频频率[/b]去调制高频发射波的[b]幅度(所谓调制,就是使发射的高频电波随着音频频率的变化而产生相应变化的过程。),使发射的高频电波幅度随着音频频率的变化而产生相应变化,这就是调幅发射。它可以用不同的音频频率去控制不同的开关通道,所以可以做成遥控多通道控制电路。由于调幅波的高频发射功率不能被全部利用,所以高频发射效率比较低,但是因为它采用了音频调制的方法,所以大大提高了抗干扰的能力。
如果用固定频率的音频去调制高频发射波的频率,使得高频发射频率随着音频频率产生相应的频率偏移,这就是调频发射。因为调频发射发送的是高频等幅波(高频全功率发射),充分利用了高频发射功率,所以在发射机的高频发射功率相同的情况下,控制距离比调幅波远得多。由于自然界里的干扰电波多数是调幅波,所以调频波的抗干扰性能也远远优于调幅波,缺点是调频接收电路相对调幅接收电路来说比较复杂一些。
如果用于调制的音频不是固定频率,而是直接用人的话音频率去调制高频发射波,那就是无线电对讲机了,发送接收的基本道理都一样。所以我在农场工作的那段时间经常喜欢把相关杂志介绍的无线电遥控电路改成单工无线电对讲机(当时对无线电对讲机的有关电路介绍比较少。)玩得不亦乐乎,因为我有时对无线电通讯似乎更感兴趣。如果用数字信号去调制高频发射电波,那发射的就是高频脉冲波了。接收电镀虽然更复杂,但是各项技术指标均有提高,工作的可靠性、稳定性都是其他调制方式望尘莫及的。
由于发射功率过大会干扰和影响其他电子设备的正常工作(飞机上不允许乘客使用手机,就是怕手机的高频发射电波会干扰驾驶舱电子仪器的正常运行而产生事故。),所以每个国家都有专门的无线电管理委员会进行监督管理,对在不同场合、不同工作性质下使用的无线电波发射功率、发射频率均有严格的限制和规定。对于业余无线电爱好者,开辟有专门的业余波段提供使用。所以你在做业余无线电发射实验的时候,千万别忘记这些基本常识,以免引起不必要的麻烦(有兴趣可以看看我附在文后的参考资料,了解一下有关政策法规。)。
遥控有效距离与发射功率、接收灵敏度和工作频率有关。但由于上述发射功率、工作频率受到各种限制,一般可以从提高接收灵敏度、改善接收电路的抗干扰性能等方面入手去改进接收电路。

最初级的无线电遥控电路,接收采用简单的超再生电路,会产生“沙沙……”的电路特有噪声,当接收到发射机发出的与接收频率相同的高频等幅波时,噪声立刻被抑制,使后级的低频放大电路的输入状态改变而驱动电子开关动作。由于它只有在打开或关闭发射机时产生对应的开关信号,所以只能工作在单通道遥控方式。而且当遥控距离拉长后,由于接收到的高频电波减弱,电路噪声将不能被完全抑制,此时的电子开关就处于极不稳定的临界状态,或开或关,这可是遥控电路的大忌!所以此遥控电路应用范围很小。
调幅接收机接收到经过音频调制的高频调幅信号以后,通过检波级将音频信号截下送往后级放大电路。如果是多通道的接收机,一般用磁罐制作精密电感组成多级不同谐振频率的LC音频滤波电路,每级只允许与该级谐振频率相同的音频频率通过,经过处理转换成直流电平驱动后面的电子开关。接收机视遥控场合的不同要求可以是直放式、高放式、外差式等电路组合,抗干扰要求高的重要场所还可以增加二次变频电路加强安全系数。
无线电遥控电路的重点就是抗干扰和稳定性问题,所以电路里为了安全可能会设置了许多的附加电路。毕竟无线电遥控电路与无线电对讲机在安全要求方面大不一样,对讲机一句话没听清楚可以要求对方再说一遍,说错了还可以纠正,用于重要场合的遥控器要是开关动作错了,也许就是人命关天的后果!
数字接收电路的接收过程以及原理这里限于篇幅我就不做详细介绍了(彩电的遥控器就是用IC内部编制的数字信号去调制红外线发射管的输出,实现了多路控制。),由于数字接收电路里没有了笨重的磁罐电感等元件,就可以通过集成化做得体积更小。现在的玩具遥控车的接收电路已有采用IC集成元件的,大大提高了遥控性能,同时也降低了生产、调试、元件的成本。

阔达的海燕
热情的小白菜
2026-02-13 17:53:43
目前万用表最全面的使用方法(一)
山东仪器仪表网简称仪表网:目前万用表最全面的使用方法
一、指针表和数字表的选用:
1、指针表读取精度较差,但指针摆动的过程比较直观,其摆动速度幅度有时也能比较客观地反映了被测量的大小(比如测电视机数据总线(SDL)在传送数据时的轻微抖动);数字表读数直观,但数字变化的过程看起来很杂乱,不太容易观看。
2、指针表内一般有两块电池,一块低电压的15V,一块是高电压的9V或15V,其黑表笔相对红表笔来说是正端。数字表则常用一块6V或9V的电池。在电阻档,指针表的表笔输出电流相对数字表来说要大很多,用R×1Ω档可以使扬声器发出响亮的“哒”声,用R×10kΩ档甚至可以点亮发光二极管(LED)。
3、在电压档,指针表内阻相对数字表来说比较小,测量精度相比较差。某些高电压微电流的场合甚至无法测准,因为其内阻会对被测电路造成影响(比如在测电视机显像管的加速级电压时测量值会比实际值低很多)。数字表电压档的内阻很大,至少在兆欧级,对被测电路影响很小。但极高的输出阻抗使其易受感应电压的影响,在一些电磁干扰比较强的场合测出的数据可能是虚的。
4、总之,在相对来说大电流高电压的模拟电路测量中适用指针表,比如电视机、音响功放。在低电压小电流的数字电路测量中适用数字表,比如BP机、等。不是绝对的,可根据情况选用指针表和数字表。
二、测量技巧(如不作说明,则指用的是指针表):
1、测喇叭、耳机、动圈式话筒:用R×1Ω档,任一表笔接一端,另一表笔点触另一端,正常时会发出清脆响量的“哒”声。如果不响,则是线圈断了,如果响声小而尖,则是有擦圈问题,也不能用。
2、测电容:用电阻档,根据电容容量选择适当的量程,并注意测量时对于电解电容黑表笔要接电容正极。①、估测微波法级电容容量的大小:可凭经验或参照相同容量的标准电容,根据指针摆动的最大幅度来判定。所参照的电容不必耐压值也一样,只要容量相同即可,例如估测一个100μF/250V的电容可用一个100μF/25V的电容来参照,只要它们指针摆动最大幅度一样,即可断定容量一样。②、估测皮法级电容容量大小:要用R×10kΩ档,但只能测到1000pF以上的电容。对1000pF或稍大一点的电容,只要表针稍有摆动,即可认为容量够了。③、测电容是否漏电:对一千微法以上的电容,可先用R×10Ω档将其快速充电,并初步估测电容容量,然后改到R×1kΩ档继续测一会儿,这时指针不应回返,而应停在或十分接近∞处,否则就是有漏电现象。对一些几十微法以下的定时或振荡电容(比如彩电开关电源的振荡电容),对其漏电特性要求非常高,只要稍有漏电就不能用,这时可在R×1kΩ档充完电后再改用R×10kΩ档继续测量,同样表针应停在∞处而不应回返。
3、在路测二极管、三极管、稳压管好坏:因为在实际电路中,三极管的偏置电阻或二极管、稳压管的周边电阻一般都比较大,大都在几百几千欧姆以上,这样,我们就可以用万用表的R×10Ω或R×1Ω档来在路测量PN结的好坏。在路测量时,用R×10Ω档测PN结应有较明显的正反向特性(如果正反向电阻相差不太明显,可改用R×1Ω档来测),一般正向电阻在R×10Ω档测时表针应指示在200Ω左右,在R×1Ω档测时表针应指示在30Ω左右(根据不同表型可能略有出入)。如果测量结果正向阻值太大或反向阻值太小,都说明这个PN结有问题,这个管子也就有问题了。这种方法对于维修时特别有效,可以非常快速地找出坏管,甚至可以测出尚未完全坏掉但特性变坏的管子。比如当你用小阻值档测量某个PN结正向电阻过大,如果你把它焊下来用常用的R×1kΩ档再测,可能还是正常的,其实这个管子的特性已经变坏了,不能正常工作或不稳定了。
4、测电阻:重要的是要选好量程,当指针指示于1/3~2/3满量程时测量精度最高,读数最准确。要注意的是,在用R×10k电阻档测兆欧级的大阻值电阻时,不可将手指捏在电阻两端,这样人体电阻会使测量结果偏小。 对于常见的进口型的大功率塑封管,其c极基本都是在中间(我还没见过b在中间的)。中、小功率管有的b极可能在中间。比如常用的9014三极管及其系列的其它型三极管、2SC1815、2N5401、2N5551等三极管,其b极有的在就中间。当然它们也有c极在中间的。所以在维修更换三极管时,尤其是这些小功率三极管,不可拿来就按原样直接安上,一定要先测一下。
仅用万用表作为检测工具的集成电路的检测方法

编者按:虽说集成电路代换有方,但拆卸毕竟较麻烦。因此,在拆之前应确切判断集成电路是否确实已损坏及损坏的程度,避免盲目拆卸。本文介绍了仅用万用表作为检测工具的不在路和在路检测集成电路的方法和注意事项。文中所述在路检测的四种方法(直流电阻、电压、交流电压和总电流的测量)是业余维修中实用且常用的检测法。这里,也希望大家提供其他实用的(集成电路和元器件)判别检测经验。
一、不在路检测
这种方法是在IC未焊入电路时进行的,一般情况下可用万用表测量各引脚对应于接地引脚之间的正、反向电阻值,并和完好的IC进行比较。
二、在路检测
这是一种通过万用表检测IC各引脚在路(IC在电路中)直流电阻、对地交直流电压以及总工作电流的检测方法。这种方法克服了代换试验法需要有可代换IC的局限性和拆卸IC的麻烦,是检测IC最常用和实用的方法。
1在路直流电阻检测法
这是一种用万用表欧姆挡,直接在线路板上测量IC各引脚和元件的正反向直流电阻值,并与正常数据相比较,来发现和确定故障的方法。测量时要注意以下三点:
(1)测量前要先断开电源,以免测试时损坏电表和元件。
(2)万用表电阻挡的内部电压不得大于6V,量程最好用R×100或R×1k挡。
(3)测量IC引脚参数时,要注意测量条件,如被测机型、与IC相关的电位器的滑动臂位置等,还要考虑电路元件的好坏。
2直流工作电压测量法
这是一种在通电情况下,用万用表直流电压挡对直流供电电压、元件的工作电压进行测量;检测IC各引脚对地直流电压值,并与正常值相比较,进而压缩故障范围,找出损坏的元件。测量时要注意以下八点:
(1)万用表要有足够大的内阻,至少要大于被测电路电阻的10倍以上,以免造成较大的测量误差。
(2)通常把各电位器旋到中间位置,如果是电视机,源要采用标准彩条发生器。
(3)表笔或探头要采取防滑措施。因任何瞬间短路都容易损坏IC。可采取如下方法防止表笔滑动:取一段自行车用气门芯套在表笔尖上,并长出表笔尖约05mm左右,这既能使表笔尖良好地与被测试点接触,又能有效防止打滑,即使碰上邻近点也不会短路。
(4)当测得某一引脚电压与正常值不符时,应根据该引脚电压对IC正常工作有无重要影响以及其他引脚电压的相应变化进行,才能判断IC的好坏。
(5)IC引脚电压会受元器件影响。当元器件发生漏电、短路、开路或变值时,或电路连接的是一个阻值可变的电位器,则电位器滑动臂所处的位置不同,都会使引脚电压发生变化。
(6)若IC各引脚电压正常,则一般认为IC正常;若IC部分引脚电压异常,则应从偏离正常值最大处入手,检查元件有无故障,若无故障,则IC很可能损坏。
(7)对于动态接收装置,如电视机,在有无时,IC各引脚电压是不同的。如发现引脚电压不该变化的反而变化大,该随大小和可调元件不同位置而变化的反而不变化,就可确定IC损坏。
(8)对于多种工作方式的装置,如录像机,在不同工作方式下,IC各引脚电压也是不同的。
3交流工作电压测量法
为了掌握IC交流的变化情况,可以用带有dB插孔的万用表对IC的交流工作电压进行近似测量。检测时万用表置于交流电压挡,正表笔插入dB插孔;对于无dB插孔的万用表,需要在正表笔串接一只01~05μF隔直电容。该法适用于工作频率比较低的IC,如电视机的视频放大级、场扫描电路等。由于这些电路的固有频率不同,波形不同,所以所测的数据是近似值,只能供参考。
4总电流测量法
该法是通过检测IC电源进线的总电流,来判断IC好坏的一种方法。由于IC内部绝大多数为直接耦合,IC损坏时(如某一个PN结击穿或开路)会引起后级饱和与截止,使总电流发生变化。所以通过测量总电流的方法可以判断IC的好坏。也可用测量电源通路中电阻的电压降,用欧姆定律计算出总电流值。
以上检测方法,各有利弊,在实际应用中最好将各种方法结合起来,灵活运用。
如何借助万用表检测可控硅
单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单向硅阳极与另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。
1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为T1极,余下是T2极。
2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。
对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。
若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。
对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。

万用表使用之一二
万用表的使用的注意事项
(1)在使用万用表之前,应先进行“机械调零”,即在没有被测电量时 ,使万用表指针指在零电压或零电流的位置上。
(2)在使用万用表过程中,不能用手去接触表笔的金属部分 ,这样一方面可以保证测量的准确,另一方面也可以保证人身安全。
(3)在测量某一电量时,不能在测量的同时换档,尤其是在测量高电压或大电流时 ,更应注意。否则,会使万用表毁坏。如需换挡,应先断开表笔,换挡后再去测量。
(4)万用表在使用时,必须水平放置,以免造成误差。同时, 还要注意到避免外界磁场对万用表的影响。
(5)万用表使用完毕,应将转换开关置于交流电压的最大挡。如果不使用 ,还应将万用表内部的电池取出来,以免电池腐蚀表内其它器件。
欧姆挡的使用
一、选择合适的倍率。在欧姆表测量电阻时,应选适当的倍率,使指针指示在中值附近。最好不使用刻度左边三分之一的部分,这部分刻度密集很差。
二、使用前要调零。
三、不能带电测量。
四、被测电阻不能有并联支路。
五、测量晶体管、电解电容等有极性元件的等效电阻时,必须注意两支笔的极性。
六、用万用表不同倍率的欧姆挡测量非线性元件的等效电阻时,测出电阻值是不相同的。这是由于各挡位的中值电阻和满度电流各不相同所造成的,机械表中,一般倍率越小,测出的阻值越小。
万用表测直流时
一、进行机械调零。
二、选择合适的量程档位。
三、使肜万用表电流挡测量电流时,应将成用表串联在被子测电路中,因为只有串连接才奶使流过电流 表的电流与被测支路电流相同。测量时,应断开被测支路,将万用表红、黑表笔串接在被子断开的两点之间。特别应注意电流抄录能并联接在被子测电路中,这样做是很危险的,极易使万表烧毁。
四、注意被测电量极性。
五、正确使用刻度和读。
六、当选取用直流电流的25A挡时,万用表红表笔应插在25A测量插孔内,量程开关可以置于直流电流挡的任意量程上。
七、如果被子测的直流电流大于25A,则可将25A挡扩展为5A挡 。方法很简单,使用者可以在“25A”插孔和黑表笔插孔之间接入一支024欧姆的电阻 ,这样该挡位就变成了5A电流挡了。接入的024A电阻应选取用2W以上的线绕电阻 ,如果功率太小会使之烧毁。

用万用表判断扬声器的正负极
首先,把指针式万用表拨到直流0~5mA挡,然后将两表笔分别接在待测扬声器的两个焊片上。用手轻按扬声器的纸盆,观察万用表指针的摆动方向,若指针正向偏转,则红表笔接的是扬声器负极,黑表笔接的是扬声器正极。反之,红表笔接的是正极,黑表笔接的是负极。
2用万用表判断压电陶瓷的好坏
压电陶瓷是一种人工合成的压电材料。当受到外界压力时,两面会产生电荷,电荷量与压力成正比,这种现象称为压电效应。压电陶瓷具有压电效应,即在外电场作用下,会产生形变,所以压电陶瓷片可用作发声元件。
利用压电陶瓷片的压电效应,可用万用表判断其好坏。
将压电陶瓷片的两极引出两根导线,然后把陶瓷片平放到桌子上,将两根引线分别接至万用表两表笔上,把万用表拨至最小电流挡,然后用铅笔橡皮头轻按陶瓷片,若万用表指针明显摆动,说明陶瓷片完好,否则,说明已损坏。
万用表的使用方法
一、36V以下的电压为安全电压,在测高于36V直流,25V交流电时,要检查表笔是否可靠接触,是否正确连接,是否绝缘良好等,以免电击。
二、换功能和量程时,表笔应离开测试点,测试时选择正确的功能和量程,谨防误操作。
三、直流电压测量,先将量程开关转至相应的DCV量程上,然后将测试表笔跨接在被测电路上,红表笔所接的该点电压与极性显示在屏幕上。
四、交流电压测量,先将量程开关转至相应的ACV量程上,然后将测试表笔跨接在被测电路上。
五、直流电流测量,先将量程开关转至相应的DCA档位上,然后将仪表串入被测电路上。
六、交流电流测量,先将量程开关转至相应的ACA档位上,然后将仪表串入被测电路上。
七、电阻测量,将量程开关转到相应的电阻量程上,将两表笔跨接在被测电阻上。
八、电容测量,将量程开关转到相应的电容量程上,将测试表笔跨接在被测电容、两端进行测量,必要时注意极性。
九、极管及通断测试,将量程开关置 档。将红表接二极管正极,黑表笔接二极管负极。如测线路的通断时,将表笔连接在待测线路的两端,如蜂鸣器响则电路通,反之电路断开。
十、管放大倍数测量,将量程开关置于hFE档,决定所测晶体管为NPN型或PNP型,将发射极,基极,集电极分别插入相应的孔里。

如何使用万用表
万用表是电子中必备的测试工具。它具有测量电流、电压和电阻等多种功能。
本节将介绍万用表的结构和使用万用表的方法。同学们应努力学会使用万用表。

一、观察和了解万用表的结构。
万用表种类很多,外形各异,但基本结构和使用方法是相同的。常用万用表的结构和外形见彩页附图。
万用表面板上王要有表头和选择开关。还有欧姆档调零旋钮和表笔插孔。下面介绍各部分的作用:
(一)表头
万用表的表头是灵敏电流计。表头上的表盘印有多种符,刻度线和数值(如图3-4(B))。符A一V一Ω表示这只电表是可以测量电流、电压和电阻的多用表。表盘上印有多条刻度线,其中右端标有“Ω”的是电阻刻度线,其右端为零,左端为∞,刻度值分布是不均匀的。符“-”或“DC”表示直流,“~”或“AC”表示交流,“~”表示交流和直流共用的刻度线。刻度线下的几行数字是与选择开关的不同档位相对应的刻度值。
表头上还设有机械零位调整旋钮,用以校正指针在左端指零位。
(二)选择开关
万用表的选择开关是一个多档位的旋转开关。用来选择测量项目和量程。(如图3一4(B))。一般的万用表测量项目包括:“mA”;直流电流、“V”:直流电压、“V”:交流电压、“Ω”:电阻。每个测量项目又划分为几个不同的量程以供选择。
(三)表笔和表笔插孔
表笔分为红、黑二只。使用时应将红色表笔插入标有“+”的插孔,黑色表笔插入标有“-”的插孔。
二、万用表的使用方法
(一)万用表使用前,应做到:
1万用表水平放置。
2应检查表针是否停在表盘左端的零位。如有偏离,可用小螺丝刀轻轻转动表头上的机械零位调整旋钮,使表针指零。
3将表笔按上面要求插入表笔插孔。
4将选择开关旋到相应的项目和量程上。就可以使用了。
(二)万用表使用后,应做到:
1拔出表笔。
2将选择开关旋至“OFF”档,若无此档,应旋至交流电压最大量程档,如“又1000V”档。
3若不用,应将表内电池取出,以防电池电解液渗漏而腐蚀内部电路。
硬件类一般都上硬之城看那里比较专业,专业的问题专业解决,这是最快的也是最好的方法,好过自己瞎搞,因为电子元器件的电子型号那些太多了一不小心就会弄错,所以还是找专业的帮你解决。

俊秀的大神
失眠的仙人掌
2026-02-13 17:53:43

1、室外机的工作原理为:

(1)利用麦克风采集语音和摄像头采集图像信号,并将采集的模拟信号进行模数转换为数字信号。主处理器对语音和数字图像信号进行压缩和增强等处理,然后将压缩好的信号通过无线信号发射器发射出去;

(2)将外设比如门铃按钮等产生的控制信号,通过无线信号发射器发射出去;

(3)无线信号接收器接收室内机发射过来的无线语音信号,主处理器将接收的语音信号进行解压缩处理,然后数模转换为模拟信号,通过扬声器播放出来;

(4)无线信号接收器接收室内机发射过来控制信号,主处理器将接收的控制信号转换为锁控制命令,并通过短距离的无线发射器(通常采用Zigbee协议)发射给开锁控制器。

2、室内机的工作原理为:

(1)无线信号接收器接收来自室外机的无线语音或视频信号,主处理器对接收的信号进行冗错和解码等处理,然后将解码的视频信号通过显示屏显示出来,而解码的语音信号经D/A转换为模拟信号,通过扬声器播放出来;

(2)将室内机的各种外设比如通话、开锁等按钮产生的控制信号,通过无线信号发射器发射出去;

(3)利用麦克风采集语音信号,并将采集的模拟信号进行模数转换为数字信号,主处理器对语音信号进行压缩处理,然后将压缩好的信号通过无线信号发射器发射出去。

开锁控制器主要用来实现无线遥控开锁。开锁控制器内嵌入各种智能锁(电控锁、磁力锁、静音锁、指纹锁和密码锁等)的控制器。当开锁控制器接收到来自室外机的无线控制信号后,通过解密和解码产生是否开锁的信号,从而遥控开锁。

扩展资料

常见的门铃有普通无线门铃、不用电池的无线门铃和有线门铃。

1、无线门铃

不用电池的无线门铃是指发射器采用能量捕获技术,可收集用户按动门铃按钮时的能量转换为电能驱动门铃发声器响铃。其室内机也就是门铃发声器需要接市电。门铃按钮产生的控制信号,通过无线信号发射器发射出去,室内机的无线信号接收器接收这一无线信号,进而响铃。

2、有源门铃

有源无线门铃即日常生活中经常见到的门铃,其发射器依靠12V电池供电,接收器依靠电池供电或者接市电。门铃按钮发射无线信号,室内机的无线信号接收器接收这一无线信号,进而响铃。

无线门铃从传输的内容来分,可分为无线非可视门铃和无线可视门铃。

3、有线门铃

发射器与接收器之间是依靠电线连接,发射器发出的信号是通过电线传输至接收器,因而信号比较稳定,也不会发生误响,但是布线比较麻烦,很可能需要凿墙等,因而近几年逐渐淡出市场。

参考资料来源:百度百科-门铃

参考资料来源:百度百科-无线门铃

默默的丝袜
漂亮的小海豚
2026-02-13 17:53:43
很努力的在找。。。
给个满意吧。。 迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。
。。。。。。。。。。。。。。。。。我就是传说中的分界线。。。。。。。。。。。。。。。。。在一台标准的迈克耳孙干涉仪中从光源到光检测器之间存在有两条光路:一束光被光学分束器(例如一面半透半反镜)反射后入射到上方的平面镜后反射回分束器,之后透射过分束器被光检测器接收;另一束光透射过分束器后入射到右侧的平面镜,之后反射回分束器后再次被反射到光检测器上。注意到两束光在干涉过程中穿过分束器的次数是不同的,从右侧平面镜反射的那束光只穿过一次分束器,而从上方平面镜反射的那束光要经过三次,这会导致两者光程差的变化。对于单色光的干涉而言这无所谓,因为这种差异可以通过调节干涉臂长度来补偿;但对于复色光而言由于在介质中不同色光存在色散,这往往需要在右侧平面镜的路径上加一块和分束器同样材料和厚度的补偿板,从而能够消除由这个因素导致的光程差。
在干涉过程中,如果两束光的光程差是光波长的整数倍(0,1,2……),在光检测器上得到的是相长的干涉信号;如果光程差是半波长的奇数倍(05,15,25……),在光检测器上得到的是相消的干涉信号。当两面平面镜严格垂直时为等倾干涉,其干涉光可以在屏幕上接收为圆环形的等倾条纹;而当两面平面镜不严格垂直时是等厚干涉,可以得到以等厚交线为中心对称的直等厚条纹。在光波的干涉中能量被重新分布,相消干涉位置的光能量被转移到相长干涉的位置,而总能量总保持守恒。
。。。。。。。。。。。。。。。。。。我依旧是分界线。。。。。。。。。。。。。。。。。。。 这个主要是测量钠双线的波长差。
实验目的
1了解迈克尔逊干涉仪的干涉原理和迈克尔逊干涉仪的结构,学习其调节方法。
2.调节观察干涉条纹,测量激光的波长。
3.测量钠双线的波长差。
4.练习用逐差法处理实验数据。
实验仪器
迈克尔逊干涉仪,钠灯,针孔屏,毛玻璃屏,多束光纤激光源(HNL
55700)。
实验原理
1.迈克尔逊干涉仪
图1是迈克尔逊干涉仪实物图。图2是迈克尔逊干涉仪的光路示意图,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出。在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的第二个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故G1又称为分光板。G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1相同。由于它补偿了光线⑴和⑵因穿越G1次数不同而产生的光程差,故称为补偿板。
从扩展光源S射来的光在G1处分成两部分,反射光⑴经G1反射后向着M2前进,透射光⑵透过G1向着M1前进,这两束光分别在M2、M1上反射后逆着各自的入射方向返回,最后都达到E处。因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹。
由M1反射回来的光波在分光板G1的第二面上反射时,如同平面镜反射一样,使M1在M2附近形成M1的虚像M1′,因而光在迈克尔逊干涉仪中自M2和M1的反射相当于自M2和M1′的反射。由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。
当M2和M1′平行时(此时M1和M2严格互相垂直),将观察到环形的等倾干涉条纹。一般情况下,M1和M2形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹)。
2.单色光波长的测定
用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M2和M1反射的两列相干光波的光程差为
Δ=2dcos
i
(1)
其中i为反射光⑴在平面镜M2上的入射角。对于第k条纹,则有
2dcos
ik=kλ
(2)
当M2和M1′的间距d逐渐增大时,对任一级干涉条纹,例如k级,必定是以减少cosik的值来满足式(2)的,故该干涉条纹间距向ik变大(cos
ik值变小)的方向移动,即向外扩展。这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d增加λ/2时,就有一个条纹涌出。反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为λ/2。
因此,当M2镜移动时,若有N个条纹陷入中心,则表明M2相对于M1移近了
Δd=N
(3)
反之,若有N个条纹从中心涌出来时,则表明M2相对于M1移远了同样的距离。
如果精确地测出M2移动的距离Δd,则可由式(3)计算出入射光波的波长。
3.测量钠光的双线波长差Δλ
钠光2条强谱线的波长分别为λ1=5890
nm和λ2=5896
nm,移动M2,当光程差满足两列光波⑴和⑵的光程差恰为λ1的整数倍,而同时又为λ2的半整数倍,即
Δk1λ1=(k2+)λ2
这时λ1光波生成亮环的地方,恰好是λ2光波生成暗环的地方。如果两列光波的强度相等,则在此处干涉条纹的视见度应为零(即条纹消失)。那么干涉场中相邻的2次视见度为零时,光程差的变化应为
ΔL=kλ1=(k+1)λ2
(k为一较大整数)
由此得
λ1-λ2==
于是
Δλ=λ1-λ2==
式中λ为λ1、λ2的平均波长。
对于视场中心来说,设M2镜在相继2次视见度为零时移动距离为Δd,则光程差的变化ΔL应等于2Δd,所以
Δλ=
(4)
对钠光=5893
nm,如果测出在相继2次视见度最小时,M2镜移动的距离Δd
,就可以由式(4)求得钠光D双线的波长差。
4点光源的非定域干涉现象
激光器发出的光,经凸透镜L后会聚S点。S点可看做一点光源,经G1(G1未画)、M1、M2′的反射,也等效于沿轴向分布的2个虚光源S1′、S2′所产生的干涉。因S1′、S2′发出的球面波在相遇空间处处相干,所以观察屏E放在不同位置上,则可看到不同形状的干涉条纹,故称为非定域干涉。当E垂直于轴线时(见图3),调整M1和M2的方位也可观察到等倾、等厚干涉条纹,其干涉条纹的形成和特点与用钠光照明情况相同,此处不再赘述。
实验内容与步骤
1.观察扩展光源的等倾干涉条纹并测波长
①点燃钠光灯,使之与分光板G1等高并且位于沿分光板和M1镜的中心线上,转动粗调手轮,使M1镜距分光板G1的中心与M1镜距分光板G1的中心大致相等(拖板上的标志线在主尺32
cm
位置)。
②在光源与分光板G1之间插入针孔板,用眼睛透过G1直视M2镜,可看到2组针孔像。细心调节M1镜后面的
3
个调节螺钉,使
2
组针孔像重合,如果难以重合,可略微调节一下M2镜后的3个螺钉。当2组针孔像完全重合时,就可去掉针孔板,换上毛玻璃,将看到有明暗相间的干涉圆环,若干涉环模糊,可轻轻转动粗调手轮,使M2镜移动一下位置,干涉环就会出现。
③再仔细调节M1镜的2个拉簧螺丝,直到把干涉环中心调到视场中央,并且使干涉环中心随观察者的眼睛左右、上下移动而移动,但干涉环不发生“涌出”或“陷入”现象,这时观察到的干涉条纹才是严格的等倾干涉。
④测钠光D双线的平均波长。先调仪器零点,方法是:将微调手轮沿某一方向(如顺时针方向)旋至零,同时注意观察读数窗刻度轮旋转方向;保持刻度轮旋向不变,转动粗调手轮,让读数窗口基准线对准某一刻度,使读数窗中的刻度轮与微调手轮的刻度轮相互配合。
⑤始终沿原调零方向,细心转动微调手轮,观察并记录每“涌出”或“陷入”50个干涉环时,M1镜位置,连续记录6次。
⑥根据式(5-8),用逐差法求出钠光D双线的平均波长,并与标准值进行比较。
2.观察等厚干涉和白光干涉条纹
①在等倾干涉基础上,移动M2镜,使干涉环由细密变粗疏,直到整个视场条纹变成等轴双曲线形状时,说明M2与M1′接近重合。细心调节水平式垂直拉簧螺丝,使M2与M1′有一很小夹角,视场中便出现等厚干涉条纹,观察和记录条纹的形状、特点。
②用白炽灯照明毛玻璃(钠光灯不熄灭),细心缓慢地旋转微动手轮,M2与M1′达到“零程”时,在M2与M1′的交线附近就会出现彩色条纹。此时可挡住钠光,再极小心地旋转微调手轮找到中央条纹,记录观察到的条纹形状和颜色分布。
3.测定钠光D双线的波长差
①以钠光为光源调出等倾干涉条纹。
②移动M2镜,使视场中心的视见度最小,记录M2镜的位置;沿原方向继续移动M2镜,使视场中心的视见度由最小到最大直至又为最小,再记录M2镜位置,连续测出6个视见度最小时M2镜位置。
③用逐差法求Δd的平均值,计算D双线的波长差。
4.点光源非定域干涉现象观察
方法步骤自拟。
迈克尔逊干涉仪系精密光学仪器,使用时应注意防尘、防震;不能触摸光学元件光学表面;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震动。