斯文的毛豆
2026-02-13 21:29:04
104是01uF,103是001uF
一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。
如:102表示10×10的2次方PF=1000PF 224表示22×10的4次方PF=022 uF
美满的热狗
2026-02-13 21:29:04
瓷片电容技术的发展历程:1900年意大利L隆巴迪发明陶瓷介质电容;30年代末人们发现在陶瓷中添加钛酸盐可使介电常数成倍增长,因而制造出较便宜的瓷介质电容;1940年前后人们发现了现在的瓷片电容技术参数的主要原材料BaTiO3(钛酸钡)具有绝缘性后,开始将瓷片电容技术参数使用于对既小型、精度要求又极高的军事用电子设备当中
1960年左右陶瓷叠片电容作为商品开始开发
1970年,随着混合IC、计算机、以及便携电子设备的进步也随之迅速的发展起来,瓷片电容成为电子设备中不可缺少的零部件,而其中技术参数也是学者们研究的重点
现在的陶瓷介质电容的全部数量约占电容市场的70%左右
因为陶瓷介质电容的绝缘体材料主要使用陶瓷,其基本构造是将陶瓷和内部电极交相重叠
陶瓷材料有几个种类
自从考虑电子产品无害化特别是无铅化后,高介电系数的PB(铅)退出瓷片电容技术参数领域,现在主要使用TiO2(二氧化钛)、BaTiO3,CaZrO3(锆酸钙)等
和其它的电容相比具有体积小、容量大、耐热性好、适合批量生产、价格低等优点
由于原材料丰富,结构简单,价格低廉,而且电容量范围较宽(一般有几个PF到上百μF),损耗较小,电容量温度系数可根据要求在很大范围内调整
瓷片电容技术参数品种繁多,外形尺寸相差甚大从0402(约1×05mm)封装的贴片电容到大型的功率瓷片电容
按使用的介质材料特性可分为Ⅰ型、Ⅱ型和半导体瓷片电容;按无功功率大小可分为低功率、高功率瓷片电容;按工作电压可分为低压和高压瓷片电容;按结构形状可分为圆片形、管型、鼓形、瓶形、筒形、板形、叠片、独石、块状、支柱式、穿心式等
瓷片电容的分类:瓷片电容技术参数从介质类型主要可以分为两类,即Ⅰ类瓷片电容技术参数和Ⅱ类瓷片电容技术参数
Ⅰ类瓷片电容技术参数(ClassⅠceramiccapacitor),过去称高频瓷片电容技术参数(High-freqencyceramiccapacitor),是指用介质损耗小、绝缘电阻高、介电常数随温度呈线性变化的陶瓷介质制造的电容
它特别适用于谐振回路,以及其它要求损耗小和电容量稳定的电路,或用于温度补偿
Ⅱ类瓷片电容技术参数(ClassⅡceramiccapacitor)过去称为为低频瓷片电容技术参数(Lowfrequencycermiccapacitor),指用铁电陶瓷作介质的电容,因此也称铁电瓷片电容技术参数
这类电容的比电容大,电容量随温度呈非线性变化,损耗较大,常在电子设备中用于旁路、耦合或用于其它对损耗和电容量稳定性要求不高的电路中
常见的Ⅱ类瓷片电容技术参数有:X7R、X5R、Y5V、Z5U其中:X7R表示为:第一位X为最低工作温度-55℃,第二位的数字7位最高工作温度+125℃,第三位字母R为随温度变化的容值偏差±15%;X5R表示为:第一位X为最低工作温度-55℃,第二位的数字5位最高工作温度+85℃,第三位字母R为随温度变化的容值偏差±15%;Y5V表示为:第一位Y为最低工作温度-30℃,第二位的数字5位最高工作温度+85℃,第三位字母V为随温度变化的容值偏差+22%,-82%±15%
Z5U表示为:第一位Z为最低工作温度+10℃,第二位的数字5位最高工作温度+85℃,第三位字母U为随温度变化的容值偏差+22%,-56%
魔幻的心锁
2026-02-13 21:29:04
带有四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表倍率;第四环代表误差。快速识别的关键在于根据第三环的颜色把阻值确定在某一数量级范围内,例如是几点几K、还是几十几K的,再将前两环读出的数"代"进去,这样就可很快读出数来。
下面介绍掌握此方法的几个要点:
(1)熟记第一、二环每种颜色所代表的数。可这样记忆:棕1,红2,橙3,黄4,绿5,蓝6,紫7,灰8,白9,黑0。这样连起来读,多复诵几遍便可记住。记准记牢第三环颜色所代表的 阻值范围,这一点是快识的关键。具体是: 金色:几点几 Ω 黑色:几十几 Ω 棕色:几百几十 Ω 红色:几点几 kΩ 橙色:几十几 kΩ **:几百几十 kΩ 绿色:几点几 MΩ 蓝色:几十几 MΩ 从数量级来看,在体上可把它们划分为三个大的等级,即:金、黑、棕色是欧姆级的;红橙\'、**是千欧级的;绿、蓝色则是兆欧级的。这样划分一下是为了便于记忆。
(3)当第二环是黑色时,第三环颜色所代表的则是整数,即几,几十,几百 kΩ等,这是读数时的特殊情况,要注意。例如第三环是红色,则其阻值即是整几kΩ的。
(4)记住第四环颜色所代表的误差,即:金色为5%;银色为10%;无色为20%。
下面举例说明:
例1当四个色环依次是黄、橙、红、金色时,因第三环为红色、阻值范围是几点几kΩ的,按照黄、橙两色分别代表的数"4"和"3"代入,,则其读数为43 kΩ。第环是金色表示误差为5%。 例2当四个色环依次是棕、黑、橙、金色时,因第三环为橙色,第二环又是黑色,阻值应是整几十kΩ的,按棕色代表的数"1"代入,读数为10 kΩ。第四环是金色,其误差为5% 在某些不好区分的情况下,也可以对比两个起始端的色彩,因为计算的起始部分即第1色彩不会是金、银、黑3种颜色。如果靠近边缘的是这3种色彩,则需要倒过来计算。 色环电阻的色彩标识有两种方式,一种是采用4色环的标注方式,令一种采用5色环的标注方式。两者的区别在于:4色环的用前两位表示电阻的有效数字,而5色环电阻用前三位表示该电阻的有效数字,两者的倒数第2位表示了电阻的有效数字的乘数,最后一位表示了该电阻的误差。
对于4色环电阻,其阻值计算方法位:
阻值=(第1色环数值10+第2色环数值)第3位色环代表之所乘数
对于5色环电阻,其阻值计算方法位:
阻值=(第1色环数值100+第2色环数值10+第3位色环数值)第4位色环代表之所乘数 例1:某4色环电阻色彩标识如下:
该电阻标称阻值=26107=260,000,000Ω=260MΩ,误差范围±5%
例2:某5色环电阻色彩标识如下:
该电阻阻值=5081,000=508,000Ω=508KΩ,误差范围±5%
-------------------------------------------------------
上面讲的是4环电阻,现在还有好多5环的。
对于4环电阻,前2环直接换成数字,第3环表示乘以10的若干次幂,如第一、二、三环的颜色分别为棕(1)、紫(7 )、红(2),则表示的电阻为17×10^2,即表示17K的电阻值。
对于5环电阻,则第4环表示乘以10的若干次幂,用前3环表示的数字乘以10的n次幂(n为第4环表示的数字)。
“五色环”读数规则 学了四色环识别方法,就比较容易理解五色环表示法;实际上,五色环比四色环只是多了一个有效数字,其它的区别是不大的。五色环的第一、二、三环表示三位有效数字,第四环表示数字后面“0”的个数,第五环表示精度。现在市场上逐步以五色环电阻为主,而且第五环精度的表示方法目前生产厂商普遍使用棕色环表示误差±1%。举例如下:
红
黑
黑
橙
棕
2
0
0
3个0
±1%
这个电阻的阻值:200000欧姆=200KΩ,可简写为200K,(误差±1%) 绿=5,棕=1,黑=0,银=001,于是,阻值=510×001=51Ω(误差±1%) 据有关资料,第五环电阻误差的表示如下表所示: 紫色 蓝色 绿色 棕色 ±01% ±025% ±05% ±1% 下面是截自某网站的表格,对色环电阻的识别方法作了简单的概括;但是很显然,那种把色环表示的数字说成“个位数”、“十位数”、“百位数”的说法是不完整的。我们在前面已经说过,当四色环中的第三环、五色环中的第四环出现金、银色的时候,前面色环的“×位数”是变化的,不是固定的。 色环电阻阻值识别方法
4色环电阻:
第一色环是十位数,第二色环是个位数,
第三色环是应乘倍数,第四色环是误差率 5色环电阻:
第一色环是百位数,第二色环是十位数,
第三色环是个位数,第四色环是应乘倍数,
第五色环是误差率。
例如:5色环电阻的颜色排列为红红黑黑棕,
则其阻值是 220×1=220 Ω,误差 ±1 %
5色环电阻通常都是误差 ±1 %的金属膜电阻。
电容器容量的表示方法 电容器容量的基本单位是“法拉”(F),1法拉的1/1000000(百万分之一)是1微法(μF),1微法的1/1000000是1pF(1微微法,或1皮法)。它们之间的关系是百万(或称10的6次方)进位关系。 我们常用的电容有: 1、 电介电容:多数在1μF以上,直接用数字表示。如:47μF、100μF、220μF等等。这种电容的两极有正负之分,长脚是正极。 2、瓷片电容:多数在1μF以下,直接用数字表示。如:10、22、0047、01等等,这里要注意的是单位。凡用整数表示的,单位默认pF;凡用小数表示的,单位默认μF。如以上例子中,分别是10P、22P、0047μF、01μF等。 3、把“色环表示法”用到电容上来:这又是一种巧妙的演绎!我们在一些瓷片电容上往往看到这样的标记:“103”,“104”,“473”等,这里,第三个数字(个位数字)并非通常理解的个位数,它和四色环电阻的第三环一样,告诉人们前两位数字后面“添加零的个数”;这样,103就是10000,104就是100000,473就是47000,单位默认pF。换算一下,103=001uF,104=01uF,473=0047uF。