滑翔翼的结构
航天飞机是一种可重复使用的由运载火箭发射的飞行器,用于进入地球轨道,在地球与轨道航天器之间运送人员和物资,并滑翔降落回地面。第一架航天飞机于1981年4月12日发射升空。航天飞机主要由3部分组成:带机翼的轨道器,用于运载航天员和物资;外部推进剂箱,用于携带供3台主发动机使用的液氢和液氧;一对大型固体推进剂捆绑式助推火箭。整个系统的起飞重量达2000吨,高56米。发射时,助推器和轨道器主发动机同时点火,推力达3100万牛顿。起飞后约两分钟,助推火箭被抛弃并用降落伞降落,回收后再次使用。轨道器将外部推进剂箱中的推进剂消耗完时,已获得99%的轨道高度,于是抛弃。此推进剂箱在坠入大气层时解体。虽然航天飞机像常规载人航天器一样垂直发射,但不同的是,它能像普通喷气式飞机一样滑翔降落在跑道上。轨道器在设计上可重复使用00次,降低了航天飞行的成本。航天飞机可将卫星和探测器装入它的货仓带到太空去施放,也可由航天员在太空中回收或修理轨道上出了问题的卫星。航天心机还可用作太空实验室,携带专门的研究设备进行各种科学实验。航天飞机完成任务返回地面远比升空时的难度与危险性要大。当轨道飞行器返回地球重入大气层时,它必须十分精确地调整好自己的状态和角度。由于机身与空气的剧烈摩擦,其外部可产生1500摄氏度的高温,如果没有防护装置,飞机将会熔化。所以,在航天飞机的外表覆盖了一层大小形状不同的黑色光亮的硅酸盐纤维瓷片,这些瓷片的隔热性能非常好,可以保证热量不被传导到飞行器上。航天飞机是迄今为止人类所制造的最复杂、最尖端的运载工具。它庞大而精密的系统由数百万个零部件组成,其中任何一个出现问题,都可能导致整个航天飞机毁灭。两架失事的航天飞机,一个是因为小小的密封圈发生泄漏,在起飞后不久发生了爆炸;一个是因为瓷片脱落击坏身,在重返大气层时发生机身解体。两次事故使十几名宇航员壮烈牺牲。人们在感激这些勇士,震惊这种灾难的同时,仍然会对科学事业充满不懈的激情。目前只有美国拥有航天飞机,但由这些航天飞机所进行伟大事业,使人类对科学的认识产生了突飞猛进的作用。一、滑翔伞飞行时的受力情况滑翔伞能够在空中飞行,是当它的翼型伞衣与空气作相对运动时,由于空气的作用在伞衣上产生空气动力的缘故。我们可以看一下滑翔伞在静止空气中作稳定滑翔时的受力情况。此时伞衣上垂直向上的空气动力R与垂直向下的系统的总重量W(飞行员、滑翔伞及所有装备重量之息和)相平衡,滑翔伞沿着向下倾斜的轨迹作等速直线运动。由于空气动力R和重力W均为矢量,所以我们可以将它们按平行四边形法则进行分解。气动力R可以分解为与滑翔轨迹相垂直的升力Y和与滑翔轨迹相平行的阻力。同理,重力W也可以分解为w1和w2两个分力。此时作用在伞衣上的所有力仍然是平衡的,即Y=w1:Q=w2。由此可见,升力Y平衡重力分力w1,而使我们能够支持在空中;而重力W2则平衡阻力Q,使滑翔伞在空中沿飞行轨迹作等速下滑运动。如果空气动力R与重力W不相平衡,则滑翔伞在空中就将作加速(或减速)运动,使R与W达到新的平衡为止。由于飞行中重力W是滑翔伞系统所固有的,所以空气动力R是随速度而变化的。二、升力的产生翼型伞衣在充气后的横截面,即翼型相对于气流运动的情况。当气流绕过翼型上、下表面流动时,由于上翼面弯度大、下翼面弯度小(基本为直线),并与气流方向有一定的角度。根据流体连续性原理和伯努里定理,稳定流动的气流流过上翼面时,受拱起的上翼面挤压作用,流线变密,流速比远前方的气流速度大,故压力降低;而流过下翼面的气流,流线变疏、流速减慢,压力增大。因此在伞衣上、下表面出现压力差,这个压力差的合力即为空气作用于伞衣上的总空气动力R,其方面垂直向上垂直的分力,就是升力Y。决定翼型伞衣升力大小的因素主要有:气流速度、空气密度、伞衣面积、翼型和伞衣攻角等。1.气流速度(V):速度是决定升力大小的一个重要因素,如果没有速度,即滑翔伞与空气没有相对运动,则伞衣上、下表面的压力差为零,所以也就不会产生升力。实验结果表明z在其他条件相同的情况下,升力大小与速度的平方成正比。为了提高与气流相对运动速度,通常滑翔伞都采用逆风起飞,以增大升力,缩短起飞助跑距离。2.伞衣面积(S):升力由伞衣上;下压力差产生,所以理论上伞衣面积越大,升力也就越大。但由于滑翔伞伞衣由柔性的纺织材料制成,依靠冲压空气成形,出于结构上的原因既要保证充气刚性,又要保持一定的翼载荷以保证飞行性能,所以不能象刚性机翼那样做得太大。3.空气密度(p):气流压力与密度成正比。密度增大时,升力也增加;密度减小时,升力也下降。4.翼型:翼型不同,气流流过上、下表面的流线情况也不同。在一定范围内,翼型的弯度和厚度越大,引起上、下表面的压力差也大,故升力也越大。5.攻角,也称迎角(α):在翼型确定之后,升力的大小取决于翼型与相对气流的角度。我们将翼型前缘与后缘用直线相连接,称为翼弦,通常用翼弦来计量各个角度。翼弦与相对气流(或滑翔飞行轨迹)之间的角度α,称之为攻角或迎角。还有很多,请自己慢慢看下面的网址
参考资料:
>传统的航天飞行器在重返大气层时,防热层在与空气摩擦过程中,往往自身被熔化而逐渐剥落。航天飞机则是多次往返于地球、太空之间的飞行器,故防热层不允许剥落,于是,人们在它的表层加装了能重复使用多次的防热瓦。航天飞机的防热瓦不是靠自身被熔来达到防热目的的,而是靠材料良好的散热性能来降低表面温度。这就需要选择一种散热极好的材料,给航天飞机穿上防热衣。美国首架航天飞机就安装了防热瓦。这种特制的防热瓦,是由90%的空气和10%的硅纤维制成的,散热性能非常高。飞机表面与空气摩擦产生的高温,每时每刻都被它以极快的速度散发掉,余热则被空气所隔而无法传递到内层。为了保护航天飞机的要害部位,防热瓦的表面还涂有一层黑色闪光的硼硅酸盐玻璃,它能反射机体与空气摩擦生成的95%的热量。在受热最高的机头和两翼前端,则采用了强化防热材料,即提高了耐热性,又增加了受力强度。可见,这种特制的防热瓦隔热确实有奇效。
航天飞机(Space Shuttle,又称为太空梭(台湾)或太空穿梭机(港澳)),是一种为穿越大气层和太空的界线(高度100公里的卡门线)而设计的火箭动力飞机。太空梭结合了飞机与航天器的性质,像有翅膀的太空船。
迄今为止只有美国与苏联有能力制造能进入近地轨道的太空梭,并曾实际成功发射并回收。其他国家发展的类似计画则尚未有实际发射并进入轨道的纪录。
1太空梭
太空梭是一种有翼、可重复使用的航天器,由辅助的运载火箭发射脱离大气层,作为往返於地球与外层空间间的交通工具,外形像飞机。
虽然世界上有许多国家都陆续进行过太空梭的开发,但只有美国与苏联实际成功发射并回收过这种交通工具。但由於苏联瓦解,相关的设备由哈萨克接收后,受限於没有足够经费维持运作使得整个太空计画停摆,因此目前全世界仅有美国的太空梭机队可以实际使用并执行任务。
太空梭的翼在回到地球时提供空气煞车作用,以及在降跑道时提供升力。太空梭升入太空时跟其他单次使用的载具一样,是用火箭动力垂直升入。因为机翼的关系,太空梭的酬载比例较低。设计者希望以重复使用性来弥补这个缺点。
太空梭列表
[编辑] 美国
美国是世界上第一个拥有与实际操作太空梭的国家,也是机队阵容最庞大的国家。美国的太空梭大多是以历史上有名的观测船作为命名,其建造过的太空梭包括如下:
正在服役中的太空梭
发现号(STS Discovery OV-103)
亚特兰提斯号(STS Atlantis OV-104)
奋进号(STS Endeavour OV-105)
挑战者号在升空73秒后突然爆炸失事。已毁太空梭
挑战者号(STS Challenger STA-099/OV-099)- 发射过程中爆炸
哥伦比亚号(STS Columbia OV-102)- 返回地球进入大气时解体
测试载台
主推进器测试体(MPTA-098)
开路者号(STS Pathfinder)- 用来与MPTA-098搭配进行测试用的太空梭造型模拟器
企业号(STS Enterprise OV-101)
[编辑] 前苏联
暴风雪号太空梭 - 暴风雪(俄语:Бура́н,Buran)太空梭计画是苏联时代为了与美国进行太空军备竞赛所发展的太空梭计画,在苏联瓦解后不久此计画也宣告正式终结,残存的设备归属给苏联时代太空中心所在地的哈萨克共和国拥有。暴风雪计画中共有五架太空梭实际上已开始建造,但是只有第一架的暴风雪号(Buran 101)真正被完成并且顺利发射升空与回收,而包括二号机小鸟号(Пти́чка,Ptichka,也就是Buran 102)在内的其他几架苏联太空梭全都是以未完成的姿态停止建造。