建材秒知道
登录
建材号 > 瓷片 > 正文

陶瓷材料作为一种难加工材料,进行机械加工时候要注意哪些问题

踏实的水蜜桃
粗犷的豆芽
2023-04-25 04:05:09

陶瓷材料作为一种难加工材料,进行机械加工时候要注意哪些问题

最佳答案
会撒娇的店员
可靠的雪碧
2026-02-18 10:24:00

耐磨、 耐高温和耐腐蚀等特性, 而被日益广泛地应用于电子、机械、冶金、化工及航空航天等领域中。但由于工 程陶瓷具有很高的硬度和较大的脆性,给其成形加工带了很大的困难。 机械磨削是目前最常用的工程陶瓷加工方法,该加工方法需用昂贵的金刚石 砂轮和高刚度的磨床,加工成本高、 效率低,且磨削时砂轮和工件之间存在强烈的 作用力,易使工件表面产生微裂纹而降低零件的使用寿命。 为此,人们开展了绝缘 工程陶瓷的激光加工、超声加工、电火花加工、等离子弧加工、磁力研磨,以及 相关的相复合加工等技术,并取得了较大的研究进展4。1、激光加工工程陶瓷 目前国内外学者对陶瓷材料激光加工技术的研究主要集中在打孔、切割、划 线和型腔加工等方面。洪蕾等人用自行研制的机械斩光盘调Q CO2,冲激光器对 Si3N4 陶瓷切割试验表明,在高峰值能量(≥15 kW) 、短脉冲宽度(1μs) 、高脉 冲频率(20kHz) 和适当的平均功率(300 W) 条件下,采用高速(>220 mm/ s) 多次 重复走刀切割工艺,可以得到无裂纹的精细切口。陈可心等人采用025 MPa 氧气 作辅助气体,用800 W 的连续波CO2 激光在厚度135 mm 的氮化硅陶瓷上加工出 了直径072 mm的无损伤深孔,深径比达1875Tsai Chwan2Huei 等人提出 了基于裂纹加工单元的激光铣削方法,他们采用CO2 和Nd : YAG激光器对Al2O3 陶瓷进行了基于裂纹加工单元的激光铣削加工,并在Al2O3 陶瓷零件上加工出了 形状较复杂的型腔。研究结果表明,采用该方法进行激光铣削所需要的功率比通 常的方法低。Henry Matt等人对TBC 陶瓷、聚晶金刚石、硬质合金和不锈钢等材 料的激光铣削工艺进行了试验研究。 为把激光加工技术更好地应用于陶瓷加工中,人们还探讨了激光预热辅助切 削或磨削等方法,其目的是增强陶瓷被加工部位的韧性,以达到降低切削或磨削 力、提高加工效率和质量等目的。I DMarinescu 等人对Al2O3 、Ferrite 、 ZrO2 和Si3N4 4 种材料进行了激光预热磨削试验,发现激光预热磨削不仅能减 少磨削过程中温度的影响作用,而且还能降低陶瓷的硬度, 增大去除量而不引起 磨削裂纹。美国Purduce 大学的C J Rozzi 等人对激光辅助切削工程陶瓷技 术进行了研究,建立了激光辅助切削ZrO2 、 Si3N4 等陶瓷瞬时三维温度场 传递的物理、数学模型,并总结出了相应的加工规律。2、超声加工工程陶瓷 与电火花加工、电解加工、激光加工等特种加工技术相比,超声加工既不依 赖于材料的导电性,又没有热物理作用,加工后工件表面无组织改变、 残余应力及 烧伤等现象等发生;加工过程中宏观作用力小,适合于加工不导电工程陶瓷。 T B THOE 等人对超声加工Al2O3 、ZrO2 、SiC等陶瓷的工艺规律和加工 机理进行了研究,给出了的研究结果,并用超声加工技术在Si3N4陶瓷上加工出了 航空航天用的涡轮叶片。 研究资料表明, 采用超声磨削工程陶瓷时,当磨削深度小于某临界值时,工程 陶瓷的去除机理与金属磨削相似,工件材料在磨刃的作用下通过塑性流动形成切 屑,避免了较深变质层的形成,塑性磨削可以获得Ra < 0 01 μm 的表面质量。超 声磨削工程陶瓷的优点是加工效率比普通磨削高一倍以上,可采用较大的磨削用 量,能有效防止砂轮堵塞,减少砂轮的修整时间。3、电火花加工工程陶瓷 在用电火花工艺加工工程陶瓷方面,日本长冈技术科学大学福泽康与丰田工 业大学毛利尚武的研究成果最具有代表性,他们提出了用辅助电极的方法加工绝 缘陶瓷材料。 该方法是利用放置在陶瓷表面的金属辅助电极被击穿放电时的熔化 和碳化等作用,来形成绝缘陶瓷表面的导电层以进行电火花加工的。 此后,他们又 探讨了采用物理蒸汽沉积TiN 来形成绝缘陶瓷表面导电层的电火花加工方法,以 及用廉价的石墨胶体溶液涂敷在工件表面,经过烘干等工序形成辅助电极的方 法。 Apiwat Muttamara 等人用普通电火花成形机和辅助电极电火花加工系统相 结合,以直径45μm 铜钨电极在0 3 mm 厚的Si3N4 陶瓷工件上成功地加工出了 直径55μm 的微孔。4、电解电火花复合加工 绝缘工程陶瓷电解电火花复合加工时,工具电极和辅助电极分别接电源的 负、 正极,工作液为电解液,由电解液的导电作用和电化学反应来形成火花放电的条件,达到放电蚀除加工的目的。 刘永红等人提出了绝缘陶瓷材料的充气电解电火花复合加工方法,研究结果 表明该加工方法具有生产率高和能耗小等优点。B Bhattacharyya 等人使用 NaOH 溶液作电解液对高纯Al2O3 的加工试验发现,加工电压越高材料去除速度 越高,但微裂纹和其他缺陷也相应增加;电解液浓度越高材料去除率越高,但过切 现象也越严重。 试验显示能够同时获得较高材料去除率和尺寸精度的加工参数为: 加工电压80 V 左右,电解液是NaOH 质量分数为40 %的溶液。另外,工具电极的尖 端形状也是影响电解电火花复合加工的一个重要因素,端部为锥形尖端形状的电 极要比端部为圆柱形的加工效果好。5、等离子弧切割 等离子弧切割可加工所有导电材料,生产成本低、切割速度快、生产率高。 对于非金属可以采用非转移型等离子弧进行切割,非转移型等离子弧在切割时阳 极斑点在喷嘴上,大量热能经水冷散失,因此能量利用率低。 由于受弧柱形态及温 度场分布限制,该加工技术很难胜任较大厚度工件的切割。大连理工大学进行了 绝缘陶瓷材料附加阳极等离子弧切割技术的研究工作,其基本原理是在被加工陶 瓷件下方设置一个附加电极,利用阴极与附加电极之间产生的等离子弧进行切割 加工。他们用该方法对6 mm 厚的Al2O3 陶瓷板进行了切割试验,得到了上口宽 5 0 mm , 下口宽4 7 mm , 切口角2 9°的光滑切口。

最新回答
慈祥的老鼠
寂寞的小馒头
2026-02-18 10:24:00

光纤激光加工材料属于热加工,靠高温气化材料,所以在陶瓷背面会不可避免的形成熔渣,需要后续工艺去除掉,比如用刀片刮或者砂轮打磨。
皮秒激光破坏物质的原理据说是库伦爆炸效应,是属于冷加工,将原子核外电子击飞,没有热作用。还有一种说法是热传导时间大于激光能量持续时间,热效应还没传递到物质上,激光能量已经作用完成,破坏掉材料了,所以没有熔渣,材料表面也会很干净。
国内知道的有德中公司,比较早在做皮秒激光设备,主要用于陶瓷,UV激光难加工的材料方面做应用,看过他们做的样品,的确和CO2激光,光纤,UV激光有不同,效果非常好,若是有材料需要可以找他们做测试,具体还要看实际加工效果。
都是手打,望采纳。

开心的楼房
负责的电话
2026-02-18 10:24:00
北京精雕设置多个加工坐标操作如下。把雕刻机头上的雕刻刀移动到要加工工件的起点,F8,记录X,Y坐标,F9,Z坐标。精雕它是数控机床的一种。金属激光精雕机可对金属或非金属板材,管材进行非接触切割打孔,特别适合不锈钢板、铁板、硅片、陶瓷片、钛合金、环氧、A3钢、金刚石等材料的激光切割加工。

包容的溪流
认真的信封
2026-02-18 10:24:00
激光切割加工能借助现代的CAD/CAM软件,实现任何形式的板材切割,采用激光切割加工,不仅加工速度快,效率高,成本低,而且避免了模具或更换,缩短了生产准备时间周期。易于实现连续加工,激光光束换位时间短,提高了生产效率。可进行多种工件交替安装。一个工件加工时,可卸下已完成的部件,并安装待加工工件,实现并行加工,减少安装时间,增加激光切割加工时间。激光切割以其高速的、高精度、高质量、节能环保等特点,已经成为现代金属加工的技术发展方向。在激光切割加工应用中,激光切割占到32%的市场份额。激光切割与其他切割方法相比,最大的区别是它具有高速、高精度和高适应性的特点。同时还具有割逢小、热影响区小、切割面质量好、切割时无噪声、切缝边缘垂度直度好、切边光滑、切割过程容易实现自动化控制等优点。激光切割板材时,不需要模具,可以替代一些需要采用复杂大型模具的冲切加工方法,能大大缩短生产周期和降低成本。

怕孤独的小鸽子
忧郁的世界
2026-02-18 10:24:00

买激光切割机  建议找——汉马激光

技术参数:

雕刻面积:1300x1000mm                                                                                                            
无级调速
激光功率:60W\、80w、100W、120W、150W、可自由选择
分 辨 率:0025mm

最小成形文字:汉字2mm、英文字母1mm
重复定位精度:±001mm
电源:Ac220v±100%,50HZ/60HZ
总功率:<1500w
工作温度:0℃-45℃
工作湿度:5%-95%
(无凝水)
支持图文格式:
BMP、GIF、JPEG、PCX、TGA、TIFF、PIT、CDR、DWG、DXF
整机重量:400kg
外形尺寸:1850×1500×1130mm

打包后尺寸:1950x1600X1300mm   550kg   (本数据只供参考、最终以实际的打包材料和方式为准!)

适用材料:
木制品、纸张、皮革、布料、有机玻璃、环氧树脂、亚克力、毛料、塑料、橡胶、瓷砖、水晶、玉石、竹制品等非金属材料。