陶瓷被我们用于哪些方面?
由于陶瓷具有质硬、耐磨损、电绝缘、耐酸碱腐蚀、耐火、对液体和气体无渗透性、化学稳定性好等特性,在建筑上被广泛用于地砖、墙砖、排水管、卫生洁具等;在化工领域,陶瓷被用于制造各种容器、管道、阀门、液体泵、坩埚、蒸发皿、燃烧舟、研钵、反应釜和各种高温工业窑炉的耐火材料;在电力方面,用于制造高低压输电线路上的绝缘子、电机用套管、绝缘支柱、低压电器和照明用具等。
近年来,陶瓷的应用范围更进一步拓展到光学、电子计算机、通信、航空航天、核能、机械、新能源、激光、生物医药等尖端科技领域,出现了许多新的陶瓷制造工艺和品种,已形成一个巨大的高新技术产业。这些新型陶瓷材料统称为特种陶瓷或先进技术陶瓷,一般分为结构陶瓷、功能陶瓷和陶瓷基复合材料三类。
氮化硅、碳化硅、碳化硼、二硼化钛等超硬质结构陶瓷具有高强度、高硬度、耐磨损、重量轻等性能,可用来制造人造金刚石、地质钻头、机床高速和精密切削刀具、模具、磨料和磨具、轴承、轴瓦、汽车发动机活塞、水轮机叶片和坦克装甲等。
氧化硅陶瓷能耐1728℃高温,氧化铝陶瓷能耐2050℃,氧化锆陶瓷能耐2690℃,氧化镁陶瓷能耐3105℃。这些高温结构陶瓷可制造飞机喷气发动机和火箭发动机喷嘴、燃烧室内衬、燃气轮机叶片、红外光源、高温传感器探头、磁流体发电通道材料和电极等。
超瓷全称为超级陶瓷。
超级陶瓷,按原料组成可分为:氧化铁陶瓷、氧化铝陶瓷、氧化钛陶瓷、氧化硅陶瓷、碳化硅陶瓷和金属陶瓷等。特种陶瓷的应用范围从电容器、滤波器、点火器、保温材料、医疗器械和通讯元件等方向扩展到航天、卫星及半导体芯片等高新技术领域。
我国特种陶瓷的研究和生产在过去20年中得到很大发展,但在实际应用、生产水平和工业化程度上仍然与发达国家相差甚远。在景德镇高技术陶瓷国际博览会上,专家预计,到2010年和2015年,我国特种陶瓷产值将分别达到300亿元和450亿元,市场需求巨大。
扩展资料
我国特陶资源十分丰富,科研力量较强。截至2002年,我国从事特种陶瓷开发研制的高校、科研院所和生产企业已超过300家,其中研发生产功能陶瓷的单位占63.6%,研发生产结构陶瓷的单位占36.4%。中国科学院、上海硅酸盐研究所、清华大学等对我国特种材料研究起到了重要的推动作用。
特种陶瓷广泛应用于工业机械设备、燃气具行业、汽车(摩托车)行业、纺织工业、机电行业、医疗器械等领域。随着经济的发展,高科技陶瓷的应用范围也不断扩大。中国硅酸盐学会晶体材料委员会副秘书长李云飞说:"我国各行业对新型材料的需求促进了特陶行业的发展,市场需求的加大又再次促进了特陶行业的发展。
"据了解,特陶可以"上天入地","上天"指特种陶瓷应用于航天科技行业,"入地"指特种陶瓷可以应用于汽车等行业。从2000年起,特种陶瓷涵盖了可用于电子行业的纳米陶瓷、用于航天器的烧蚀材料、用于气体泄漏检测的气敏陶瓷、与肌体相容的生物陶瓷、用于光学材料的透明陶瓷等。
李云飞介绍,汽配产业已成为特种陶瓷的重要应用领域,控制尾气的催化转换器就是由特种陶瓷制成的,单更换催化转换器的市场就达到1100万台/年,利润达到55亿元/年。
首先,特陶材料特别是结构陶瓷技术性问题较大、成本高、可靠性低、重复性强,导致应用面相对较窄技术成果的产业化有待加强,规模化生产技术和工艺装备相对落后,急需改造技术开发资金投入仍显不足。
其次,来自发达国家的竞争和国际贸易摩擦也是制约我国特陶业发展的因素。目前我国特陶产业面临的挑战主要来自发达国家特陶企业的市场竞争。美国和日本在特陶生产方面发展十分迅速。日本是世界特种陶瓷最大的生产国,在世界特种陶瓷市场特别是电子陶瓷市场中占据主导地位。
1995年日本占世界特种陶瓷市场的60%,2000年有所下降,但仍占50%。美国是世界特种陶瓷第二生产大国,美国高技术陶瓷的年均投入达到12亿美元,在基础研究和工艺技术上处于世界领先水平。西欧高技术陶瓷发展也比较快,2012年欧洲研发的新型陶瓷刹车盘已用于超级跑车及奥迪A8的车身。
传统陶瓷主要用于餐具、日用容器、工艺品及普通建筑材料。
现代陶瓷主要有结构陶瓷、陶瓷基复合材料、功能陶瓷。
结构陶瓷主要用于发动机汽缸套、轴瓦、密封圈、陶瓷切削刀具。
陶瓷基复合材料主要在军械和航空航天领域。
功能陶瓷被广泛用于电绝缘体,在计算机、精密仪器领域得到广泛应用。
2、作为磨料,可用来做磨具,如砂轮、油石、磨头、砂瓦类等。
3、作为金属脱氧剂,碳化硅脱氧剂是一种新型的强复合脱氧剂,取代了传统的硅粉碳粉进行脱氧,各项理化性能稳定,脱氧效果好,时间缩短,提高炼钢效率,提高钢的质量,降低原辅材料消耗,减少环境污染等等都具有重要价值。
4、高纯度的单晶,可用于制造半导体、制造碳化硅纤维。
5、用于3—12英寸单晶硅、多晶硅、砷化钾、石英晶体等线切割。太阳能光伏产业、半导体产业、压电晶体产业工程性加工材料。
6、避雷针、电路元件、紫外光侦检器、结构材料、天文、碟刹、离合器、柴油微粒滤清器、细丝高温计、陶瓷薄膜、裁切工具、加热元件、核燃料、珠宝、钢、护具、触媒担体等领域。
7、利用碳化硅具有耐腐蚀、耐高温、强度大、导热性能良好、抗冲击等特性,碳化硅一方面可用于各种冶炼炉衬、高温炉窑构件、碳化硅板、衬板、支撑件、匣钵、碳化硅坩埚等。
8、高温耐火材料领域。比如有色金属冶炼工业的高温间接加热材料,如竖罐蒸馏炉、精馏炉塔盘等。
9、建材陶瓷砂轮工业则利用其导热系数、热辐射、高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料。
具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。
特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。
基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。
超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。
分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。
应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。
好处一:易清洗
大多数人都有这样的经验,如果是塑料的饭盒,盛了一些炒菜尤其是油量比较大的炒菜后,油就会附着在上面,特别难以清洗,即便用洗洁精,都不容易清洗掉。而用这些瓷器清洗就很容易了,大多数时候只需要用水冲就可以干净。如果是油比较大的,滴上一点洗洁精,就变得特别干净,特别透亮。
好处二:传递热比较慢
像其他材料的生活用品尤其是塑料的,传递热的速度非常快,如果倒上一杯热水,就烫的没办法拿了。但是如果用瓷的杯子,就不存在这样的问题。还有一个关键的方面就是塑料在高温的状态下会释放一些化学物质,这些物质是对人体有害的。但是瓷器不会,使用起来更健康。
好处三:使用时间长
随着科技的发达,家中的一些盘子或者碗也有不锈钢等其他材料的。这些用起来非常方便,不怕摔不怕碰的,但是这些材料会与盐或者其他物质产生反应,对容器形成一定的腐蚀,影响使用的时间。但是瓷器不一样,瓷器具有非常的耐腐蚀性,只要使用的时候加小心,不摔在地上,就可以使用很多年。
结构陶瓷是以强度、刚度、韧性、耐磨性、硬度、疲劳强度等力学性能为特征的材料。
2 应用于提高陶瓷材料的超塑性
只有陶瓷粉体的粒度小到一定程度才能在陶瓷材料中产生超塑性行为,其原因是晶粒的纳米化有助于晶粒间产生相对滑移,使材料具有塑性行为。
纳米陶瓷的超塑性在电子、磁性、光学以及生物陶瓷方面有潜在应用。纳米陶瓷可能具有的低温超塑性、延展性和极高的断裂韧性,将使其成为兼具陶瓷和金属的优良特性(如高强度、高硬度、高韧性、耐高温、耐腐蚀、易加工等)的新结构和功能材料,在航空、航天、机械、电子信息等众多领域具有无限广阔的应用前景。
3 应用于制备电子(功能)陶瓷
纳米陶瓷粉体之所以广泛地用于制备电子陶瓷,原因在于陶瓷粉体晶粒的纳米化会造成晶界数量的大大增加,当陶瓷中的晶粒尺寸减小一个数量级,则晶粒的表面积及晶界的体积亦以相应的倍数增加。
4 应用于制备陶瓷工具刀
纳米技术的出现以及纳米粉体的工业化生产,使得制备金属陶瓷刀成为现实。
众所周知,制作优秀的陶瓷案例的第一步当然是准备生产所需的原材料。陶瓷材料主要是由氧化锆和少量的金属钇作为有机粘合剂组成。为了保证融合过程的稳定性,在融合过程中需要直接对两种材料进行加压和2000摄氏度的高温处理。出炉后的成品只是一个简陋的雏形,想要外观光滑、线条优美的成品,需要进一步进行2000摄氏度的高温烧制和抛光精工。
研磨后的成品尺寸肯定与我们的实际需求不一致。为了使手表的体积能按比例缩小到合适的尺寸,需要将打磨后的产品放入炉中继续加热到1400摄氏度,再通过蒸馏烧制,就可以实现了。陶瓷手表是由氧化锆陶瓷材料制成的:制作陶瓷的历史相当悠久,可以说是人类最古老的生产技术之一。
传统陶瓷的制备工艺是指用粘土或含有粘土的混合物通过混合、成型和煅烧制成的各种产品,其中煅烧是在具有特定温度和气氛的窑内进行的。用于陶瓷桌的高科技陶瓷显然要经过更精确的制备过程。新的陶瓷是由精细研磨的氧化锆和碳化钛粉末制成,其颗粒大小约为千分之一毫米,约为伦蒂头发直径的五分之一。
赋予手表表壳、表带各种颜色的技术手段,是包括在外壳或表带上采用不同性能的有色金属基材的涂层和镀膜技术,也可以通过表面改性技术使基材表面产生与原材料不同的颜色,还可以在陶瓷粉末原料中加入金属氧化物作为着色剂;具有特定颜色的陶瓷材料是在一定温度和气氛下烧结后形成的。使用表面技术制备的陶瓷手表,总是不能保持一致,随着时间的迁移而暴露出材料的内部性质,所以使用着色剂可以得到最一致的产品。