氧化铝陶瓷片的包装方法
热压和热等静压。在对氧化铝陶瓷片进行包装时,需要使用热压和热等静压方法进行包装,确保陶瓷片的完整性。氧化铝是一种无机物,是一种高硬度的化合物,熔点为2054度,沸点为2980度,在高温下可电离的离子晶体,常用于制造耐火材料。
近年来,随着科技的进步和经济的飞速发展,资源在不断减少,有的甚至接近了枯竭的边缘,所以需要不断探求新材料,以满足可持续发展的要求。新型结构陶瓷材料氮为典型的耐高温、高硬度及高耐蚀材料〔1〕,如碳化硅、化硅等。在特种陶瓷制品生产过程中,成形是塑造制品形体的手段。用户对陶瓷制品的性能和质量要求各异,这就使陶瓷制品的形状、大小、厚薄等不同,因此,成形方法是多种多样的。特种陶瓷的成形方法有多种,如注浆成形法(坯料含水量或含调和剂量<38%)、可塑成形法(坯料含水量或含调和剂量<26%)、压制成形法(坯料含水量或含调和剂量<3%)等。压制成形可分为干压成形(粉料含水量为3%~7%)和等静压成形(粉料含水量为3%以下),多用于圆形、片状、简单不规则形状部件的生产。
干压成形时,由于压力分布不均匀而造成素坯内部密度分布不一致,从而影响制品的各种性能。为了提高素坯的密度,在实际生产中,常采用不断增大压力的方法。压力增大,无疑会提高素坯的密度,但并不是压力越大越好,当超过极限压力时,压力反而会使素坯密度下降,其原因是由于层裂引起的。本文针对这一问题,探讨了新的—干压结合冷等静压的成形方法,研究了其压制方法——
对陶瓷力学性能的影响。
2.2粉料检测2.2.1粒度
粉料粒度检测采用美国Honeywell公司的Micro-
tracX-100激光粒度仪。被测SiC粉料的粒径为D50=0.693um,绝大部分粉料粒径<2um。由此得出该粉料属
亚微米级范畴,且颗粒级配适当。
2.2.2松装密度及流动性
取一定量的粉料,采用北京钢铁研究总院生产的流动性及松装密度检测仪,
测得粉体松装密度为
0.91g/cm3,流动性为16.35s/30g。2.2.3显微分析
由图1SiC原始粉末的SEM照片看出粉料颗粒细小,级配较好,但还有少量团聚现象存在。经喷雾造粒后的粉料综合性能得到了明显改善,其SEM照片如图2所示。
2实验
图1
2.1粉料选择
SiC原始粉末的SEM图
6
FOSHANCERAMICS
Vol.17No.11(SerialNo.132)
室温800℃(脱胶)!2150℃(保温
30min,烧成)
图3
烧结工艺流程图
3试验结果讨论
根据所测坯体的素坯密度、烧后密度与其抗弯强度
测量数值,分析比较各种组合下的综合性能,找出最优
图2
喷雾造粒后SiC粉末的SEM图
组合。
2.3试验方法
干压成形操作方法方便简洁,技术、资金投入少,但因其有压制制品形状简单、压制受力不均、易变形等多种缺点,所以一般与其他成形方法结合使用〔2〕。冷等静压成形的坯体强度大、密度高而均匀,可以成形长径比大、形状复杂的零件,尤其可以实现坯体近、净尺寸成形,在改善产品性能,减少原料消耗,降低成本等方面,都具有显著的优点〔3〕。结合上述两种成形方法的优点,本实验采用干压结合冷等静压的成形方法。取一定量的粉料,将其装入金属模具中预压制成50mm×50mm×10mm的方块,分别记为1#、2#、3#、4#、5#、6#、7#、8#、9#、10#、11#、12#,其中
但是陶瓷粉末的硬度略低于玻璃的硬度,而且其脆性与玻璃相似,所以成型后再精修有较大的难度,而且也不能达到烧结后釉层的表面粗糙度,这样就失去了等静压的优点。
所以,用等静压方法直接压出陶瓷齿轮可行。
1、配方为:石英、粘土、钠长石、钾长石、滑石、硅酸锆、煅烧粘土、硅灰石、氧化铁、工业氧化锰、氧化铬和羧甲基纤维素钠。
2、一种制备权利要求所述的一种电工陶瓷用等静压釉料的方法,其特征在于,首先按照重量百分比组成称取原料,加入至球磨机内进行球磨,控制球磨后的颗粒粒径小于10μm,球磨后所得的釉浆中水份含量为28到32%,最后将釉浆过200目筛。
先进陶瓷的制备工艺过程包括粉体制备、成型、烧结和精加工等。其中,烧结是将陶瓷坯体在高温下进行致密,最终形成固体材料的一种技术,烧结技术在先进陶瓷的生产过程中起着至关重要的作用。常见的烧结方式有常压烧结、热压烧结、热等静压烧结和微波烧结等,其中,热压烧结是目前采用的比较广泛的一种方法。
热压烧结是对较难烧结的粉体在模具内施加压力,同时升温烧结的工艺。把原料粉末装入金属或高强石墨模腔,在加压的同时,加压到正常烧结温度或稍低,在短时间内粉末被烧结成致密、均匀、晶粒细小的陶瓷材料。热压烧结用的模具材料有石墨、氧化铜、碳化硅等,其中,石墨材料得到了较为广泛的应用。
热压烧结过程中根据加压方式的不同可以分为恒压法、高温加压法、分段加压法,按烧结方式又可分为真空烧结、气氛烧结、连续加压烧结等。
与其他烧结方式相比,热压烧结工艺具有以下优点:热压烧结工艺由于加热加压同时进行,粉料处于热塑性状态有助于颗粒的接触扩散流动并有利于传质过程的进行,因而成型压力较小;还能降低烧结温度并缩短烧结时间从而抵制晶粒长大得到晶粒细小、致密度较高、并具有较高的机械性能和较高的力学性能的产品,无需添加烧结助剂或成型助剂可生产超高纯度的陶瓷产品。
热压烧结工艺的缺点是烧结过程比较复杂以及热压烧结设备比较复杂,对设备要求高,加工成本高且生产效率低,而且只能制备形状较为简单的产品。
洗煤厂管道耐磨陶瓷内衬是什么样的,这个东西是怎样固定到管道内壁上的?
两种方式,一种是离心力复合到一起的,另一种是陶瓷胶粘贴在一起的。如图
自蔓燃复合耐磨管
陶瓷片耐磨弯头
洗煤厂管道耐磨陶瓷耐磨管
一种借助于工业标准批量生产的钢管作为母材、采用铝热离心工艺生产的耐磨内衬陶瓷管及管件产品,作为新一代耐磨管道便应运而生。
耐磨内衬陶瓷管与传统的钢管、耐磨合金铸钢管、铸石管以及钢塑、钢橡管等有着本质性区别。陶瓷钢管外层是钢管,内层是刚玉。刚玉层维氏硬度高达1100—1500(洛氏硬度为90-98),相当于钨钴硬金。耐磨性比碳钢管高20倍以上,它比通常粘接而成的刚玉砂轮性能优越得多。现在刚玉砂轮仍是各种磨床削淬火钢主要砂轮。陶瓷钢管中刚玉层可把刚玉砂轮磨损掉。陶瓷钢管抗磨损主要是靠内层几毫米厚的刚玉层,其莫氏硬度为9,仅次于金刚石和碳化硅,在所有氧化物中,它的硬度是的。而铸石管成分中只有20%左右是刚玉,大部分为SiO2,SiO2莫氏硬度为7。高铬或稀土耐磨合金管,维氏硬度400左右(洛氏硬度为50左右);不足刚玉硬度的三分之一。所以耐磨合金铸钢管,铸石管抗磨既靠成分和组织,又靠厚度,陶瓷钢管抗磨能力与它们相比,有了质的飞跃。
耐磨内衬陶瓷管是采用自蔓延高温合成——离心法制造的,陶瓷钢管中刚玉熔点为2045°C,刚玉层与钢层由于工艺原因结构特殊,应力场也特殊。在常温下陶瓷层受压应力,钢层受到拉应力,二者对立统一,成一个平衡的整体。只有温度升高到400°C以上,由于二者热膨胀系数不一样,热膨胀产生的新应力场和使陶瓷钢管中原来存在的应力场相互抵消,使陶瓷层与钢铁层两者处于自由平衡状态。当温度升高到900℃把耐磨内衬陶瓷管放入泠水内,反复浸泡多次,复合层不裂缝或崩裂,表现出普通陶瓷无可比拟的抗热冲击性能。这一性能在工程施工中大有用处,由于其外层是钢铁,加之内层升温也不崩裂,在施工中,对法兰、吹扫口、防爆门等能进行焊接,也可用直接焊接方法进行连接,这比耐磨铸石管、耐磨铸钢管、稀土耐磨钢管、双金属复合管、钢塑管、钢橡管在施工中不易焊接或不能焊接更胜一筹。耐磨内衬陶瓷管抗机械冲击性能也好,在运输、安装敲打以及两支架间自重弯曲变形时,复合层均不破裂脱落。
热热等静压技术优点在于集热压和等静压的优点于一身,成形温度低,产品致密,性能优异,故是高性能材料制备的必要手段;目前在美国,日本,已经欧洲都实现了产业化,在海洋,航空,航天,汽车等领域应用;我国起步较晚,20世纪60年代,国内一些科研单位,开展了一系列的研究,包括热等静压设备的开发,航空高温合金粉末涡轮盘的开发,热等静压高性能材料的研发,取得了一系列的研究成果及科学技术进步奖;我国开展热等静压的产业化起步较晚,目前此技术在我国的普及率极低,由于没有规模化,产业化,故生产成本较高,目前主要还技术集中在航空航天高性能材料的研发及铸件的致密化处理;但是随着经济的发展,建设创新性国家的需求,以及一些高性能材料的开发,国内某些单位依托科研院所的研究成果,开展了热等静压产业化的工作;为我国的新材料开发,以及热等静压的普及工作作出了卓有成效的工作;