电容上面只标记了一个105,这个电容是多大的????
电容标记105,代表该电容的容量,以三位数标注法,前两位是有效数字,第三位是位率(即为10的多少次方),单位为pF,105=10*10的5次方,105=1000000pF=1000nF=1μF。
103,即10*10^3皮法=10纳法。
104,即10*10^4皮法=100纳法。
105,即10*10^5皮法=1000纳法=1微法。
计算方法:
前两位数字代表有效数字,第三位代表10的n次幂,单位是皮法。
扩展资料
贴片电容有中高压贴片电容和普通贴片电容,系列电压有6.3V、10V、16V、25V、50V、100V、200V、500V、1000V、2000V、3000V、 4000V 贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示。
贴片电容系列的型号有0201、0402、0603、0805、1206、1210、1812、2010、2225 等。 贴片电容的材料常规分为三种,NPO,X7R,Y5V NPO 此种材质电性能最稳定,几乎不随温度,电压和时间的变化而变化,适用于低损耗,稳定性要求要的高频电路。
容量精度在5%左右,但选用这种材质只能做容量较小的,常规100PF 以下,100PF- 1000PF 也能生产但价格较高 X7R 此种材质比NPO 稳定性差,但容量做的比NPO 的材料要高,容量精度在10%左右。 Y5V 此类介质的电容,其稳定性较差,容量偏差在20%左右,对温度电压较敏感,但这种材质能做到很高的容量,而且价格较低,适用于温度变化不大的电路中。
参考资料来源:百度百科-贴片电容
一般应用在电压等级比较高的回路。
而独石电容器,大多50V,100V。200V的独石电容器都很少见。
独石电容器大多应用在控制回路(信号回路)。
瓷片电容器,尺寸一般比独石电容器大不少。
只要空间放得下,容量一致,应用场合要求不那么严格,替代是可以的。
103,即10*10^3皮法=10纳法
104,即10*10^4皮法=100纳法
105,即10*10^5皮法=1000纳法=1微法
扩展资料:
贴片电容的作用:
1、旁路
旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。 就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。
为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。 这能够很好地防止输入值过大而导致的地电位抬高和噪声。地电位是地连接处在通过大电流毛刺时的电压降。
2、去耦
从电路来说, 总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大, 驱动电路要把电容充电、放电, 才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大, 这样驱动的电流就会吸收很大的电源电流。
由于电路中的电感,电阻,这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。
3、滤波
从理论上说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1μF 的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。
有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。具体用在滤波中,大电容(1000μF)滤低频,小电容(20pF)滤高频。把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压,滤波就是充电,放电的过程。
4、储能
储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150 000μF 之间的铝电解电容器是较为常用的。
根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW 的电源,通常采用体积较大的罐形螺旋端子电容器。
20,
12,10没有表示单位的为最小单位“pf”
3位数的最佳记忆化法就是前面两位容量数再在后面加几个0的意思例如:
102就是前面两位是10再在后面加2个0的意思,即是等于1000,没有表示单位的为最小单位“pf”102即等于1000pf等于1nf
10就是前面两位是10再在后面加个5个0的意思,即是等于1000000,105即等于1000000pf等于1000nf等于1uf
331为330pF=0.33nF=0.00033μF
68为68pF
682为6800pF=6.8nF=0.0068μF
5为5pF
附:小瓷片、涤纶电容的标识含义(给你学习)
1F(法)=1000000 μF(微法),即106μF(微法)
1μF(微法)=1000 nF (纳法),即103nF(纳法)=1000,000 pF (皮法)
1nF (纳法) =1000 pF (皮法) ,即103pF(皮法)
104表示为:10,0000 pF(皮法)=100 nF (纳法)=0.1μF(微法);
223表示为:22,000 pF(皮法)=22 nF (纳法)=0.022μF(微法);
684表示为:68,0000 pF(皮法)=680 nF (纳法) =0.68μF(微法);
105表示为:10,00000 pF(皮法)=1000 nF (纳法)=1μF(微法)。
1、电容耐压、误差标识意义
I类、II类电容的耐压代号:
A::1.0V G: 4.0V B::1.25V W::4.5V C::1.6V H::5.0V D: 2.0V
J::6.3V E::2.5V K::8.0V F::3.15V Z::9.0V
以上字母前面的数字表示10的多少次幂,如2A就表示耐压为1.0×10^2=100V; 2J就表示耐压为6.3×10^2=630V。
2、电容器精度等级表示方法
常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:
D——0.05级——±0.5%;
F——0.1级——±1%;
G——0.2级——±2%;
J—— I 级——±5%;
K—— II 级——±10%;
M—— III 级——±20%。
电容105P是1uF,因为105P=1UF=100000PF。
计算方式:前两位是有效数字,第三位是后面0的个数,单位是pf,电容基本都这么表示 105就是1000000pf嗯,105就是10后面5个零。
1法拉(F)= 10^3毫法(mF)=10^6微法(μF)=10^9纳法(nF)=10^12皮法(pF)=10^15fF。
电容的其他参数:
1、额定电压,为在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压。如果工作电压超过电容器的耐压,电容器将被击穿,造成损坏。在实际中,随着温度的升高,耐压值将会变低。
2、绝缘电阻。直流电压加在电容上,产生漏电电流,两者之比称为绝缘电阻。当电容较小时,其值主要取决于电容的表面状态;容量大于0.1时,其值主要取决于介质。通常情况,绝缘电阻越大越好。
3、损耗。电容在电场作用下,在单位时间内因发热所消耗的能量称做损耗。损耗与频率范围、介质、电导、电容金属部分的电阻等有关。
4、频率特性。随着频率的上升,一般电容器的电容量呈现下降的规律。当电容工作在谐振频率以下时,表现为容性;当超过其谐振频率时,表现为感性,此时就不是一个电容而是一个电感了。所以一定要避免电容工作于谐振频率以上。