普通陶瓷的导热系数是多少?比如普通的瓷碗、瓷杯子或瓷的卫生洁具。
普通陶瓷的导热系数通常在0.03W/m.K~2.00W/m.K之间,因为陶瓷的材质不是固定的,所以具体需要根据不同的材质标准、不同的使用目的等来决定。
不同成分的陶瓷的导热系数不同,高导热性能的陶瓷可以和铝的导热性能相媲美;而导热系数小的陶瓷的导热系数和钢材相差不是很大。
扩展资料:
影响陶瓷导热系数的因素:
1、湿度:材料吸湿受潮后,导热系数就会增大。水的导热系数为0.5W/(m·K),比空气的导热系数0.029W/(m·K)大20倍。而冰的导热系数是2.33W/(m·K),其结果使材料的导热系数更大。
2、温度:材料的导热系数随温度的升高而增大,但温度在0~50℃时并不显著,只有对处于高温和负温下的材料,才要考虑温度的影响。
3、热流方向:当热流平行于纤维方向时,保温性能减弱而热流垂直纤维方向时,保温材料的阻热性能发挥最好。
您好!佳日丰泰您身边的热管理解决方案专家为您详细解答:
导热陶瓷绝缘片有以下特点:
1.陶瓷片导热系数高达28.9W/(m-K)和170W/(m-K),大小不限,厚度从0.2mm~5.5mm。远比普通导热垫片的导热系数高,因此在功率器件散热要求非常苛刻的条件下得到了广泛的应用。而目前市场上常有的导热垫片的导热系数大都在2.0 W/(m-K)以下,导热系数较高的贝格斯Sil-Pad2000系列也只有3.5W/(m-K);是代替硅胶片、矽胶片、软矽胶垫、绝缘粒、云母片理想材料;
2.使用寿命较长。可以减少设备的维修次数,提高设备运行的安全性和稳定性;
3.耐高温和高压。陶瓷垫片的击穿强度在15kV~65kV,允许使用的最高温度达1600℃,能适应高温、高压、高磨损、强腐蚀的恶劣工作环境,满足电源产品在各种场合的应用要求。
25℃时部分陶瓷的导热系数k,单位
[W•/(m•℃)]
陶瓷材料—k
氧化铍(BeO)瓷—243
氮化铝(AlN)—175
氮化硼六方(BN)—56.94
氧化镁(MgO)瓷—41.87
氧化铝(Al2O3)96%瓷—31.77
氧化铝(Al2O3)99%瓷—31.4
氮化硅(Si3N4)—12.56
(数据引自《电气电子绝缘技术手册》,P.482)
以氧化铝为主成分的陶瓷。根据主晶相的不同,可分为刚玉瓷、刚玉-莫来石瓷及莫来石瓷等。根据氧化铝百分含量的不同又分为高纯氧化铝瓷、99瓷、95瓷、85瓷、75瓷等。瓷体的性能取决于组成与显微结构,随Al2O3含量的减少,熔点降低。具有较低的热膨胀、较高的热导率及高的机械强度,因此具有高抗热震性。烧结刚玉制品能抵抗NaOH、Na2O2、Na2CO3、金属、炉渣、PbPO3等的侵蚀作用,常温下能抵抗碱和氢氟酸作用。在高温下,能被TiC、ZrC等还原,与水蒸气长期作用也能起反应。氧化铝有多种变体,其中主要有α、γ型,除α-Al2O3外其他都是不稳定晶型。氧化铝陶瓷可作为特殊的耐火材料,机械工业的耐磨零部件及刀具材料,用作电子工业及其他工业的绝缘体,β-Al2O3还可作钠硫电池等。
1.含量为99%(质量)的陶瓷,按主晶相分类为刚玉瓷。烧结温度约1700℃±10℃,随Al2O3含量增多烧结越来越难,一般须加入助烧剂。主要性能:密度为3.9g/cm3,抗弯强度为370~450MPa,热膨胀系数为6.7×10-6/℃(20~100℃),介电强度25~30MV/m,体积电阻率1012~1013Ω·cm(100℃±5℃),相对介电常数为10.0。常用来制作坩埚、瓷舟、耐火炉管等。
2.含量为95%(质量)的氧化铝陶瓷,主晶相为α-Al2O3,烧结温度在1650℃±20℃左右。主要性能:相对介电常数8.5~9.6,介电强度为15~18MV/m,体积电阻率1010~1012Ω·m,抗弯强度为280~350MPa,密度约3.5g/cm3。作为装置用陶瓷应用十分广泛。 1.基本信息
英文名Boron Nitride
分子式BN 分子量24.81(按1979年国际原子量)
质量标准企业标准(QJ/YH02·08-89)
氮化硼是由氮原子和硼原子构成的晶体,该晶体结构分为六方氮化硼(HBN)、密排六方氮化硼(WBN)和立方氮化硼,其中六方氮化硼的晶体结构具有类似的石墨层状结构,呈现松散、润滑、易吸潮、质轻等性状的白色粉末,所以又称“白色石墨”。
2.物化性质
理论密度2.27g/cm3,比重2.43,莫氏硬度为2。六方氮化硼是具有良好的电绝缘性,导热性,化学稳定性;无明显熔点,在0.1MPA氮气中3000℃升华,在惰性气体中熔点3000℃,在中性还原气氛中,耐热到2000℃,在氮气和氩中使用温度可达2800℃,在氧气气氛中稳定性较差,使用温度1000℃以下。六方氮化硼的膨胀系数相当于石英,但导热率却为石英的十倍。 六方氮化硼不溶冷水,水煮沸时水解非常缓慢并产生少量的硼酸和氮;与弱酸和强碱在室温下均不反应,微溶于热酸,用溶融的氢氧化钠,氢氧化钾处理才能分解。
3.氮化硼的技术指标
1、规格99 ,BN≥99% B2O3≤0.5%粒度 D50(um)≤2.0;
2、规格98 ,B N≥98% B2O3≤0.5%粒度 D50(um)≤2.0。
4.氮化硼的各项性能参数
1、 高耐热性3000℃升华,其强度1800℃为室温的2倍,1500℃空冷至室温数 十次不破裂,在惰性气体中2800℃不软化。
2、 高导热系数热压制品为33W/M.K和纯铁一样,在530℃以上是陶瓷材料中导热最大的材料。
3、 低热膨胀系数2×10-6的膨胀系数仅次于石英玻璃,是陶瓷中最小的,加上其具有高导热,所以抗热震性能很好。
4、 优良的电性能高温绝缘性好,25℃为1014Ω—CM,2000℃还可达到103Ω—CM,是陶瓷中最好的高温绝缘材料,击穿电压3KV/MM,低介电损耗108HZ时为2.5×10-4,介电常数为4,可透微波和红外线。 5、 良好的耐腐蚀性与一般金属(铁、铜、铝、铅等)、稀土金属 ,贵重多属,半导体材料(锗、硅、砷化钾),玻璃,熔盐(水晶石、氟化物、炉渣)、无机酸、碱不反应。
6、 低的摩擦系数u为0.16,高温下不增大,比二硫化钼,石墨耐温高,氧化气氛可用到900℃,真空下可用到2000℃。
7、 高纯度含B高其杂质含量小于10PPM,而含B大于43.6%。
8、 可机械加工性其硬度为莫氏2,所以可用一般机械加工方法加工成精度很高的零部件制品。
六方氮化硼的用途
六方氮化硼可以用于制造TiB2/BN复合陶瓷,还可以用于高级耐火材料和超硬材料,水平连轧钢的分离环,用于耐高温润滑剂和高温涂料同时还是合成立方氮化硼的原料。
具体用途
1、 金属成型的脱模剂和金属拉丝的润滑剂。
2、 高温状态的特殊电解、电阻材料。
3、 高温固体润滑剂,挤压抗磨添加剂,生产陶瓷复合材料的添加剂,耐火材料和抗氧化添加剂,尤其抗熔融金属腐蚀的场合,热增强添加剂、耐高温的绝缘材料。
4、 晶体管的热封干燥剂和塑料树脂等聚合物的添加剂。
5、 压制成各种形状的氮化硼制品,可用做高温、高压、绝缘、散热部件。
6、 航天航空中的热屏蔽材料。
7、 在触媒参与下,经高温高压处理可转化为坚硬如金刚石的立方氮化硼。
8、 原子反应堆的结构材料。
9、 飞机、火箭发动机的喷口。
10、高压高频电及等离子弧的绝缘体。
11、防止中子辐射的包装材料。
12、由氮化硼加工制成的超硬材料,可制成高速切割工具和地质勘探、石油钻探的钻头。
13、冶金上用于连续铸钢的分离环,非晶态铁的流槽口,连续铸铝的脱模剂(各种光学玻璃脱膜剂) 14、做各种电容器薄膜镀铝、显像管镀铝、显示器镀铝等的蒸发舟。
15、各种保鲜镀铝包装袋等。
16、各种激光防伪镀铝、商标烫金材料,各种烟标,啤酒标、包装盒,香烟包装盒镀铝等等。
17、化妆品用于口红的填料,无毒又有润滑性,又有光泽是法国最好的口红。 分子式:CB4
分子量:55.25
CAS号:12069-32-8
性质:密度2.51。
又称一碳化四硼(tetra-boron carbide)。有光泽的黑色晶体。工业品一般呈粉状。密度2.520g/cm3。熔点2350℃。沸点>3500℃。溶于熔融碱。不溶于水和酸。硬度仅次于金刚石。由硼酸、人造石墨和石油焦混合物在电弧炉内于1700~2300℃下进行碳化反应,经冷却后破碎,筛选,多次热水洗涤,粗碎,酸洗,沉降分离,干燥,筛分制得。也可由元素硼和碳混合,在2200~2250℃下反应制得。广泛用于硬质合金,作研磨材料,以及宝石材料的加工和金属硼化合物的制取等。也用于原子反应堆。
导热性是对固体或液体传热的能力的衡量。导热性用热导系数来衡量。
导热性能好的物体,往往吸热快,散热也快。
【常见材料的导热系数】
铜的导热系数约为380W/m.K
铝的导热系数约为160W/m.K
铸铁的导热系数约为48W/m.K
不同钢材的导热系数在13.7~43.6W/m.K之间
99%氧化铍陶瓷具有较高的导热系数,相当于金属铝(用于大规模集成电路基板,大功率气体激光管,晶体管的散热片外壳,微波输出窗和中子减速剂等材料)
99%氧化铝陶瓷的导热系数约为37W/m.K(用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等)
A12O3陶瓷(瓷器的主要原料是高岭土,其Al2O3含量一般在30%左右)的导热系数约为27W/m.K,热喷涂AI2O3陶瓷涂层导热系数为8.
7W/m.K(600℃)和5.3W/m.K(1200℃),可起到隔热作用
塑料的导热系数低,不同塑料材料的导热系数在0.18~0.5W/m.K之间,如PC是0.2,HDPE是0.5,ABS是0.25等
木材的导热系数在0.13~0.18W/m.K之间
【答案】
根据以上资料可以看出这些常见材料的导热快慢顺序为:
瓷、铁、塑料、木头
铁>瓷>木头>塑料
传热的基本规律:金属的大于非金属的,固体的大于液体的,液体大于气体的,
相同或近似的物质,越致密导热就越好。所以铁>瓷>木头>塑料
热传导简称导热。两个相互接触且温度不同的物体,或同物体的各不同温度部分间在不发生相对宏观位移的情况下所进行的热量传递过程称为导热。物质传导热量的性能称为物体的导热性。
密实固体内部和静止流体中的热量传递都是纯导热在起作用。导热部分参与了在运动流体中的热量传递。
扩展资料:
导热材料主要种类
石墨烯、导热粘合剂石墨烯制备设备 、导热测试仪 加热元件 导热硅胶片、导热绝缘材料、导热界面材料、导热矽胶布、导热胶带、导热硅脂、导热膏、散热膏、散热硅脂、散热油、散热膜、导热膜等。
一、热设计作为一个专门的学科成功的解决了设备中热量的损耗或保持问题。在热设计中往往需要考虑功率器件与散热器之间的热传导问题。合理选择热传递介质,不仅要考虑其热传递能力,还要兼顾生产中的工艺、维护操作性、优良的性价比。
这些材料是近年来针对设备的热传导要求而设计的,性能优异、可靠。它们适合各种环境和要求,对可能出现的导热问题都有妥善的对策,对设备的高度集成,以及超小超薄提供了有力的帮助,该导热产品已经越来越多的应用到许多产品中,提高了产品的可靠性。
1)相变导热绝缘材料
利用基材的特性,在工作温度中发生相变,从而使材料更加贴合接触表面,同时也获得了超低的热阻,更加彻底的进行热量传递,是CPU、模块电源等重要器件的可靠选择。
2)导热导电衬垫
特殊工艺和先进技术的结晶,超乎寻常的导热能力和低电阻是在特殊场合使用的材料,其热传导能力和材料本身具备的柔韧性,很好的贴合了功率器件的散热和安装要求。
3)热传导胶带
广泛应用在功率器件与散热器之间的粘接,能同时实现导热、绝缘和固定的功能,能有效减小设备的体积,是降低设备成本的有利选择。
4)导热绝缘弹性橡胶
具有良好的导热能力和高等级的耐压,符合目前电子行业对导热材料的需求,是替代硅脂导热膏加云母片的二元散
热系统的最佳产品。该类产品安装便捷,利于自动化生产和产品维护,是极具工艺性和实用性的新型材料。
5)柔性导热垫
一种有较厚的导热衬垫,专门为利用缝隙传递热量的设计方案生产,能够填充缝隙,完成发热部位与散热部位的热
传递,同时还能起到减震、绝缘、密封等作用,能够满足设备小型化、超薄化的设计要求。
6)导热填充剂
也可以作为导热胶使用,不仅具有导热的功效,也是粘接、密封灌封的上佳材料。通过对接触面或罐状体的填充,
传导发热部件的热量。
7)导热绝缘灌封胶
导热绝缘灌封胶适用于对散热性要求高的电子元器件的灌封。该胶固化后导热性能好,绝缘性优,电气性能优异,
粘接性好,表面光泽性好。
二、导热绝缘弹性橡胶
导热绝缘弹性橡胶采用硅橡胶基材,氮化硼、氧化铝等陶瓷颗粒为填充剂,导热效果非常好。同等条件下,热阻抗要小于其它导热材料。具有柔软,干净,无污染和放射性,高绝缘性的特点,玻璃纤维加固提供了良好的机械性能,能够防刺穿、抗剪切、抗撕裂,可带导热压敏背胶。
导热橡胶的导热性能不仅和导热材料的厚度有关,还和导热材料的使用面积有关。由于导热材料的结构关系,所以一般情况下,导热材料还会和受到的压力大小有关系。压力大,导热能力就会强。一般导热材料受到压力在5-100psi,大多数散热器的安装压力不会超过250psi。
氧化铝导热橡胶:导热性好,外型美观,广泛用于通信等产品的散热。
氮化硼导热橡胶:导热性能优异,适用大功率器件散热,相同条件下与普通导热材料相比,可使器件温度低20℃以上。
使用注意事项:
以上几种导热绝缘材料都是采用硅橡胶为基材。使用时散热表面应平滑、干净,不应有毛刺,以免刺破橡胶片,破坏绝缘。导热材料的热阻越小,进入稳定时间越短,稳定温度越低。导热绝缘片的使用不需要再辅以其它材料。
三、相变导热绝缘材料
相变导热绝缘材料,主要用于高性能的微处理器和要求热阻极低的发热元件,以确保良好散热。相变导热绝缘材料在大约45~50℃时会发生相变。并在压力作用下流进并填充发热体和散热器之间的不规则间隙,挤走空气,以形成良好导热的界面。
应用场合:
微处理器、存储模块和高速缓冲存储器芯片
DC/DC转换器、IGBT和其它的功率模块
功率半导体器件、固态继电器、桥式整流器
相变衬垫是采用成卷包装,长度为100英尺,标准宽度为25.4毫米,另有多种规格可选。
参考资料:百度百科-导热材料
不同成分的钢材的导热系数也有不同,但是在十几到四十几之间。一般认为是十几,多也不过是20左右。给分啊,新手上路