陶瓷电容损坏原因有哪些?
陶瓷电容就是用陶瓷作为电介质,在陶瓷基体两面喷涂银层,然后经低温烧成银质薄膜作极板而制成
它的外形以片式居多,也有管形、圆形等形状
陶瓷电容一般都是圆形的蓝色本体
随着科技发展需求,陶瓷电容在电子市场的需求与日俱增
那陶瓷电容损坏原因有哪些呢?潮湿对电参数恶化的影响
空气中温度过高,会使陶瓷电容器的表面绝缘电阻下降,对于半密封结构电容器来说,水分会渗透到电容器的介质内部使电容器介质的绝缘电阻绝缘能力下降
因此,高温,高湿环境对陶瓷电容的损坏影响较大
二:银离子的迁移
无机介质电容器多半采用银电极,半密封电容器在高温条件下工作,渗入电容器内部的水分子产生电解
产生氧化反应,银离子与氢氧根离子结合产生氢氧化银
由于电极反应,银离子迁移不仅发生在无机介质表面,还扩散到无机介质内部,引起漏电流增大,严重时会使两个银电极之间完全短路,导致陶瓷电容损坏或击穿
有的陶瓷电容器,在运用测试操作时,电容器投入时的电流过大,无任何无电压保护措施,也无串联电抗器,使电容器过热,绝缘降低或损坏,如果操作频繁,也会影响陶瓷电容损坏,甚至爆炸
如果选购到质量不好的陶瓷电容,在长期工作电压下,内部残存的气泡产生局部放电现象
局部放电进一步导致绝缘损伤和老化
温度也会上长,会导致陶瓷电容损坏,击穿
以陶瓷作为介电物质的为陶瓷电容,陶瓷是不导电的,两边的导电金属膜在电压增高后则形成电场,当长时间在电场作用下,会有少量的电子以及离子的交换或渗透现象,这个原理可以这样理解,老陶瓷在鉴定过程中叫作“沁”,就是部分离子进入内部,即渗透的过程。半导体行业中所称扩散层也是这个意思。当有极少量的金属进入其中,影响其介电常数则是不言而喻的,其容量,耐压指标发生变化就是所谓的老化现象了。
1.潮湿对电参数恶化的影响
空气中湿度过高时,水膜凝聚在电容器外壳表面,可使电容器的表面绝缘电阻下降。此外,对于半密封结构电容器来说,水分还可渗透到电容器介质内部,使电容器介质的绝缘电阻绝缘能力下降。因此,高温、高湿环境对电容器参数恶化的影响极为显著。经烘干去湿后电容器的电性能可获改善,但是水分子电解的后果是无法根除的。例如,电容器的工作于高温条件下,水分子在电场作用下电解为氢离子(H+)和氢氧根离子(OH-),引线根部产生电化学腐蚀。即使烘干去湿,也不可能使引线复原。
2.银离子迁移的后果
无机介质电容器多半采用银电极,半密封电容器在高温条件下工作时,渗入电容器内部的水分子产生电解。在阳极产生氧化反应,银离子与氢氧根离子结合生产氢氧化银;在阴极产生还原反应,氢氧化银与氢离子反应生成银和水。由于电极反应,阳极的银离子不断向阴极还原成不连续金属银粒,靠水膜连接成树状向阳极延伸。银离子迁移不仅发生在无机介质表面,还能扩散到无机介质内部,引起漏电流增大,严重时可使用两个银电极之间完全短路,导致电容器击穿。
3.高温条件下陶瓷电容器击穿机理
半密封陶瓷电容器在高湿度环境条件下工作时,发生击穿失效是比较普遍的严重问题。所发生的击穿现象大约可以分为介质击穿和表面极间飞弧击穿两类。介质击穿按发生时间的早晚又可分为早期击穿与老化击穿两种,早期击穿暴露了电容介质材料与生产工艺方面存在的缺陷,这些缺陷导致陶瓷介质介电强度显著降低,以至于在高湿度环境的电场作用下,电容器在耐压试验过程中或工作初期,就产生电击穿。老化击穿大多属于电化学击穿范畴。由于陶瓷电容器银的迁移,陶瓷电容器的电解老化击穿已成为相当普遍的问题。银迁移形成的导电树枝状物,使漏电流局部增大,可引起热击穿,使电容器断裂或烧毁。热击穿现象多发生在管形或圆片形的小型瓷介质电容器中,因为击穿时局部发热严重,较薄的管壁或较小的瓷体容易烧毁或断裂。
4.电极材料的改进
陶瓷电容器一直使用银电极。银离子迁移和由此而引起含钛陶瓷介质的加速老化是导致陶瓷电容器失效的主要原因。有的厂家生产陶瓷电容器已不用银电极,而改用镍电极,在陶瓷基片上采用化学镀镍工艺。由于镍的化学稳定性比银好,电迁移率低,提高了陶瓷电容器的性能和可靠性。
又如,以银做电极的独石低频瓷介质电容器,由于银电极和瓷料在900℃下一次烧结时瓷料欠烧不能获得致密的陶瓷介质,存在较大的气孔率;此外银电极常用的助溶剂氧化钡会渗透到瓷体内部,在高温下依靠氧化钡和银之间良好的浸润“互熔”能力,使电极及介质内部出现热扩散现象,即宏观上看到的“瓷吸银”现象。银伴随着氧化钡进入瓷体中后,大大减薄了介质的有效厚度,引起产品绝缘电阻的减少和可靠性的降低。为了提高独石电容器的可靠性,改用银-钯电极代替通常含有氧化钡的电极,并且在材料配方中添加了1%的5#玻璃粉。消除了在高温下一次烧结时金属电极向瓷介质层的热扩散现象,能促使瓷料烧结致密化,使得产品的性能和可靠性有较大提高,与原工艺和介质材料相比较,电容器的可靠性提高了1~2个数量级。
5.叠片陶瓷电容器的断裂
叠片陶瓷电容器最常见的失效是断裂,这是叠片陶瓷电容器自身介质的脆性决定的。由于叠片陶瓷电容器直接焊接在电路板上,直接承受来自电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力。因此,对于叠片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是叠片陶瓷电容器断裂的最主要因素。
6.叠片陶瓷电容器的断裂分析
叠片陶瓷电容器机械断裂后,断裂处的电极绝缘间距将低于击穿电压,会导致两个或多个电极之间的电弧放电而彻底损坏叠片陶瓷电容器。
叠片陶瓷电容器机械断裂的防止方法主要有:尽可能地减少电路板的弯曲,减小陶瓷贴片电容在电路板上的应力,减小叠片陶瓷电容器与电路板的热膨胀系数的差异而引起的机械应力。
如何减小叠片陶瓷电容器在电路板上的应力将在下面另有叙述,这里不再赘述。减小叠片陶瓷电容器与电路板的热膨胀系数的差异而引起的机械应力,可以通过选择封装尺寸小的电容器来减缓,如铝基电路板应尽可能用1810以下的封装,如果电容量不够可以采用多只并联的方法或采用叠片的方法解决,也可以采用带有引脚的封装形式的陶瓷电容器解决。
7.叠片陶瓷电容器电极端头被熔淋
在波峰焊焊接叠片陶瓷电容器时可能会出现电极端头被焊锡熔掉了。其原因主要是波峰焊叠片陶瓷电容器接触高温焊锡的时间过长。现在在市场上的叠片陶瓷电容器分为适用于回流焊工艺的和适用于波峰焊工艺的,如果将适用于回流焊工艺的叠片陶瓷电容器用于波峰焊,很可能发生叠片陶瓷电容器电极端头的熔淋现象。关于不同焊接工艺下叠片陶瓷电容器电极端头可以承受的高温焊锡的时间特性,在后面的叠片陶瓷电容器的适用注意事项中有详尽叙述,这里不在赘述。
消除的办法很简单,就是在使用波峰焊工艺时,尽可能地使用符合波峰焊工艺的叠片陶瓷电容器;或者尽可能不采用波峰焊工艺。
而往往瓷片电容容易受到损坏和老化的情况,其中之一的原因我们在日常的操作中使用不恰当
瓷片电容出现断裂或微裂的情况是由于加工工艺和电容在使用过程中的机械、热应力等作用因为影响而成的
而电容的失效往往由于老化、磨损、疲劳等原因导致瓷片电容加速恶化
不同材质的瓷片电容对于工作温度的使用要求都是不一样的,大家操作的时候可以看看如下列表:对于有要求的温度使用范围希望大家都遵守,目的是可以保证瓷片电容的寿命,不会提高老化速度
首先考虑瓷片电容本身质量问题,未达标生产即次品;
瓷片电容达到寿命极限,即是否已经老化;
如不存在1.2问题,电容爆裂一般跟电压有关,即是否远远超出标称值或者超出最大耐压值。
MLCC首先分为一类瓷和二类瓷。
一类瓷(NP0\SL等)一般组成是碳酸镁等物质组成,这种一类瓷在一般情况下都是顺电体的,也就是规整的晶格形状,那么自由电子都呈规律性的运动,所以呢,它的容量一般情况下不会变化或者很微小,所以几乎没有老化特性。
二类瓷一般由碳酸钡等材料组成,这种二类瓷在居里点之下会慢慢呈现铁电态,也就是不规整的晶格形状,那么电子运动不规律,也相互抵消,所以呢,慢慢的容量呈现老化特性,而且我们测试容量时是在二类瓷在顺电态(人为可以变成顺电态)下测试的,这样就不奇怪了。
希望能帮到你!