如何对陶瓷企业进行技术改造
陶瓷工业技术改造的根本目的和其他行业一样,在于推动生产的不断发展。因此,一切技术改造项目,应当是既先进可靠,又切合生产实际需要。同其他技术密集型产业相比,陶瓷工业,不是不需要技术改造,而是改造的内容和重点有其特定意义。根据陶瓷工业生产特点和技术现状,陶瓷工业技术改造的重点应放在以下三个方面:
1.提高产品质量,更新产品结构。生产社会所需要的适销对路的产品,这是社会主义企业的生产目的,而工艺技术和设备则是达到这个目的的手段。陶瓷工业企业要在国际市场上抢占位置,并不需要也不可能全部脱胎换骨,从厂房、设备、生产流程到工艺操作全部更新.我国陶瓷企业在国际竞争中处于被动地位的原因,除了战略方针不明确、企业经营机制不适应等因素外,在很大程度上是由于技术水平不高,劳动生产率低,成品合格率不高,产品适销能力差所造成的,也就是说,能否提高产品生产技术已成为发展我国陶瓷工业的关键所在。
就陶瓷工业来说,只有在产品确定之后,才能考虑采用什么工艺来实现,而也只有在工艺确定后,才能考虑用什么设备来加工。工艺改造,设备和技术的更新,原材料改善,技术进步等的效果最终要体现在陶瓷产品上.从这个意义上说,技术改造就是产品改造,目的是要生产出适应性强、经济效益高的顺应世界需要潮流的优质产品,使陶瓷工业企业具有不断创新和形成规模生产的能力,在陶瓷产品质量、产品结构上实行一个大改变。也就是说,以陶瓷产品质量和产品结构的改革为目标,从陶瓷产品与生产要素之间的关系着手,分析对照哪些设备技术、工艺、原材料等与当代产品技术不相适应,然后就这些生产要素中最关键的环节逐项进行技术改造,从而提高陶瓷综合生产能力。以日用陶瓷为例,同国外八九十年代先进技术水平相比,影响我国陶瓷产品质量的主要因素是原料精制技术、成型干燥设备和耐火材料等。因此,我们以产品质量为中心的技术改造的重点应放在这方面。
我们的产品改造应在控制总量的前提下,淘汰或限产中低档瓷种,增加出口产品的开发和生产,扶持—批陶瓷样板厂的改造,开发和发展国内外市场畅销的骨灰瓷、高档强化瓷、微波瓷等生产技术设备,并尽快实现大批量生产,转化为新的生产能力。目前,正在实施的景德镇瓷器工业“八五”期间第一期技术改造专项贷款2.5亿元将包括高温釉中彩瓷、高档青花玲珑瓷、釉中彩强化瓷三个高档瓷技改工程;原料标准化、煤气净化、优质窑具、优质模具、消化翻版陶机设备五项基础工业改造;还将完成12条燃煤隧道窑和5条燃油辊道窑的煤气技改工程。这一期技改完成后,景德镇出口瓷比例可由1990年的28.1%提高到52%,其中高档瓷比例由3.8%提高到25.8%;平均每件换汇由往年的31美分增至50美分,其中高档瓷每件2美元。
2.解决能源消耗大、利用率低的问题。陶瓷工业是高耗能产业,美国以51家耗能最大的企业作为调查重点,其中32家系硅酸盐企业;英国也将陶瓷工业列为重点调查节能的对象之一。调查结果表明,在陶瓷工业生产成本中,能源消耗要占30%左右,在我国,用于能源的平均成本费用更高达40%,为各项成本费用的首位。陶瓷工业的热能主要是消耗在烧成和干燥两个工序上,其消耗比例大致为:烧成占61%,干燥占25%,取暖占8%,动力和照明占6%,如机械化水平低,企业环境差,则前两项合计所占的比重当更大,我国目前即属于这一情况。据统计,我国陶瓷工业热利用率极低(热效率为20%一30%),仅为发达国家的1/2(陶瓷工业发达国家热效率为50%一60%)。大部分热能消耗在排烟、排热损失,窑车、窑具蓄热损失,窑体散热损失,辐射热损失,化学不完全燃烧的燃料损失以及其他人为的浪费中。目前我国陶瓷工业的能源消耗,平均每万元产值消耗标准煤15吨,吨瓷耗标准煤1.2吨,比国际上平均能耗高一倍以上,与先进制瓷国的日本、德国等相比则更为落后。
造成中国陶瓷工业能源消耗大的重要原因,是耗能设备装置的落后。因为耗能的大小主要取决于窑炉的先进性,我国八大产瓷区拥有竖式的倒焰窑126座,占全部烧成窑炉的一半,耗煤比国内一般隧道窑还要高出30%一40%。而以国内隧道窑来说,其结构和材料也还是处于国外四五十年代的水平,凭人工操作,烧成温度也很不稳定,烧成1公斤瓷耗能达18000千卡左右,比国外普通隧道窑高出50%左右。国外在烧成工艺上,目前已普遍采用气体燃料,采用明焰快速烧成制度,窑炉结构设计已由传统的隧道窑发展到装配式隧道窑。目前出现的意大利推板窑、针式窑,每公斤瓷耗能只有1100—3000千卡。捷克和斯洛伐克、德国采用快烧推窑,能耗为4200千卡。就是一般的窑炉,每公斤瓷烧成能耗也仅在6000—9000千卡之问,压力、温度都是自动控制,燃烧稳定,热效率高,温差小,产品合格率高。另外,耐火材料的落后,也影响到能耗的增大,国外瓷器与匣体重量之比一般为1:2—4,而我国平均为1:6—7,高的达1:8,也就是说我国烧1公斤的瓷器就要烧6—8公斤的匣钵,仅这一项,能耗就比国外高得多。
综上所述,在提高烧成质量的前提下,应力求在窑炉、耐火材料等主要耗能设备装置上加以改进和革新,提高现有设备的热利用率,管理上合理地组织生产;提高产品的产量和质量,克服人为的浪费,以求得最大限度地降低能耗,提高经济效益,增强国际市场竞争能力。
3.提高原料质量,减少原料消耗.原料是陶瓷工业生产的重要物质条件,陶瓷工业的生产过程也就是原料的消费过程,陶瓷原料的质量和节约使用,对提高陶瓷产品质量和劳动生产率,降低成本,增加积累起着重要作用。从物质形态来说,陶瓷原料构成产品的主要实体,它们的质量决定着陶瓷产品的质量;从价值形态来说,在产品成本中,陶瓷原料费用占相当大的比重,随着陶瓷工业生产技术的进步和劳动生产率的提高,这个比重还有继续提高的趋势。但目前我国陶瓷原料加工工业比较落后,大部分产瓷区还没有专业化的陶瓷原料生产厂,瓷厂基本上是将天然状态或粗加工的原料直接进厂,致使原料质量波动很大,严重影响陶瓷产品质量,适应不了工业化大生产的要求。
陶瓷行业现正向有利于人类文明健康的绿色(环保)陶瓷方向发展。绿色陶瓷的标准是:
1、节约能源和原材料消耗,并做到物尽其用。
2、对环境有污染的废气(SO2、CO、CO2、NOx及烟尘等)尽量要少。
3、对人类有害的废水(含铅、镉、汞、铬等重金属元素)尽量要少。
4、对人类身体不利的放射性物质不存在。
5、提倡生产自洁、抗菌、杀菌等保健功能的陶瓷。
6、粉尘、游离二氧化硅尽量要少。
7、噪音、热散失尽量要少。
8、生产和工作环境要清洁、干净、舒适。
(一)降低陶瓷行业能源消耗的途径
1、向绿色窑炉方向发展。
我国是能源资源相对贫乏的国家,陶瓷行业又是耗能大户。今后佛山陶瓷窑炉的发展方向是由过去提出的辊道化、煤气化、轻型化、自动化、大型化向绿色(环保、节能和智能型)窑炉方向发展。
实现绿色窑炉的努力方向是:降低窑炉用机电耗和噪音、研究先进的节能和低污染燃烧器,使用新型的耐火材料和涂料,研究新的智能自动控制方式和方法,建立废气净化研究检测中心。
实现绿色窑炉的目标是:燃料消耗进一步下降10%-20%,热效率提高10%-20%,电力消耗下降10%-30%,噪音和烟尘有较大程度的下降,并使我国陶瓷窑炉达到世界先进水平。
2、我国建筑卫生陶瓷能耗水平与国外先进水平差距。
二十几年来,我国陶瓷窑炉的发展经历了从倒焰窑到装匣钵隧道室再到辊道窑的过程,燃料也从烧煤到烧油再到烧气的过程,能源消耗大幅度下降,窑炉的能耗已从80年代初的占生产成本40%-45%降低到现在的30%-35%。但是和国际先进水平相比还有相当大的差距。
3、球磨工艺
球磨制浆的电耗占陶瓷厂全部电耗的60%。通过采用合理的料球比,选用高效减水剂、助磨剂和氧化铝衬,氧化铝球可提高研磨效率,缩短球磨周期。选用大吨位的球磨机可减少电耗10%-30%。提高喷雾干燥塔泥浆的浓度,可显著降低喷雾干燥塔的热耗。如将喷雾干燥塔泥浆的浓度从60%提高到65%,可节省单位热耗21%,如浓度从60%提高到68%,则可节省能耗33%,这可以通过加入高效的减少剂来实现。
国内制备泥浆均使用间歇式球磨机,国外先进国家普遍使用连续式球磨机,产量提高三倍以上,电耗降低三倍以上。球磨时给排料完全自动化,不需要停机,容易制浓浆,使后面的喷雾干燥器可节省能耗
4、大型喷雾干燥塔
使用大型喷雾干燥塔单位电耗省,如用7000型可比3200型节电10%左右。
5、浆池间歇式搅拌
浆池电机上装时间继电器,搅拌20-30分钟,停30-40分钟,泥浆不会沉淀,可节电50%以上。
6、采用大吨位压砖机和新型空压机
采用大吨位压砖机压力大,压制的砖坯质量好,合格率高,产量也大,并有专门的节电设计,可节电20%-27%;
采用新型的单螺杆空气压缩机代替旧式空压机。可节电30%以上,并大大降低噪音。
7、一次烧成技术
一次烧成比两次可大量节能。我国地砖和外墙砖90%采用一次烧成。内墙釉面砖只有10%采用一次烧成,要努力研究适于一次烧成的内墙釉面砖的坯釉组成,提高一次烧成的比例,可节省能耗和电耗30%以上。
8、低温快烧
增加熔剂性成份,选用适于快烧的原料(如硅灰石、透辉石等)和适当的窑炉(如辊道窑)。实现低温快烧是烧成节能的有效途径。如烧成温度从1280C降到1180C,烧成能耗可降低
9、选用保温性能良好的窑体材料和涂料
使用容量小,耐高温的陶瓷纤维做窑体保温材料,窑炉外表温度可降到500C左右,可减少散热损失。
选用耐高温的远红外线涂料在窑内壁,可增加幅射传热,节能
10、采用轻质低蓄热窑车隧道窑窑车离开窑内时的蓄热属于热损失,应大量采用轻质材料,降低窑车蓄热。最新的轻质窑车是在高铝红柱石和堇青石板壳内填充陶瓷纤维。它有传统窑车材料的稳定性及性能,蓄热却比传统材料降低70%,因此可以显著降低燃料消耗,运营维修费用。
11、高速节能喷咀
高速节能烧咀能在窑炉内部产生强大的热量和气流搅动,因此提高了热量的传输而被广泛采用。此类烧咀与传统烧咀相比,可以节约10%-15%的燃料。
12、余热利用
隧道窑和辊道窑冷却区的余热,可以用在半成品干燥和本窑加热助燃空气用,预热温度越高,节省燃料越多。助燃空气预热到400C比预热到150C可节省燃料17%,预热到600C可节能
隧道窑和辊道窑废烟气可以通过余热锅炉和热管换热器予以回收,也可以抽去干燥半成品。
13、自动控制
窑炉采用智能化的计算机进行自动控制,可稳定窑炉的温度、气氛、压力,提高产品质量,可节能。
14、超霸节能刮平粗抛机
佛山南海科泰机电有限公司的新产品节能刮平粗抛机是一种具有刮平和粗抛功效的新机型,能使瓷质砖得到一个更加平整光滑的表面及一致的厚度,大幅提高瓷质砖的抛光产量、质量和光洁度。不仅在结构上有创新,而且工艺上实现了以刮代磨的创新性突破。每月可为企业节能降耗17万元,并真正实现一机一窑,使抛光砖成本降低30%左右。
15、使用变频器
10千瓦以上的风机,辊道窑的传动系统、油泵、安装变频器可节电
16、降低风机电耗和噪音
目前国外先进风机噪音在50-70分贝,噪音较小,国产风机噪音在80-90分贝,有的甚至超过100分贝,噪音很大。国外一条窑炉风机使用的功率为70-90千瓦,而国产风机为130-170千瓦(以产量相同的建筑卫生陶瓷窑炉计算)
(二)废旧低质材料在陶瓷行业中的应用
1、生产用过的废水经水处理设备处理后,消除了有害物质,并经过滤后可重新投入生产使用。
2、喷雾塔除尘器出来的微粉直接输往浆池搅拌成泥浆后经中转浆罐混和后再送进喷雾塔造料。
3、卫生陶瓷半成品次品经挑选干净后,再进球磨机磨成浆料使用(可以单独球磨,也可以每次加5%-10%进球磨机使用。)
4、卫生陶瓷成品中的废品经清洁粉碎成熟料,加进球磨机当骨料使用,可减少产品的收缩、变形、开裂和针孔缺陷。熟料加进釉料中,可提高卫生陶瓷釉面的光泽度。
5、墙地砖半成品的次品经分类清洁堆放后,可重新进球磨机做色料和坯料用(如水晶砖、仿古砖等)。
6、墙地砖成品中的废品经清洁干净,并打碎成适当的尺寸后,可放进球磨机中作球蛋石使用,不会影响产品的质量。
7、陶瓷废品料可以开发固体混凝土,免烧型广场砖和道路砖等。
8、陶瓷废品料可以开发墙地砖、过滤器等。
9、使用冶炼炉废渣为主要原料生产出装饰市场上独树一帜的硬似钻、颜如玉的绿色建材产品金属瓷砖。还可以生产红瓷、白瓷、灰瓷等金属瓷砖,有的还可以生产色釉料。
10、用含氧化铁的矿物质代替二氧化钛(钛白粉)制造出金花米黄产品。也可以用锻烧过的高岭土(3000元/吨)代替二氧化钛(约9000元/吨)生产金花米黄产品。
11、已磨损的双缸泥浆泵的陶瓷柱塞,经磨平加工后(几毫米)配套耐磨橡胶圈便可以重新使用,维修费只有原价的
12、陶瓷机械行业磨床等使用过的机油,自动压砖机使用过的液压油,经处理和过滤后可以重新投入使用,可节省50%的费用。
13、要逐步调查和摸清楚我国陶瓷行业原材料的现有状况(包括高、低温度和质量)并制定长期合理科学开发和利用的规划,并搞好原料的标准化生产,防止资源浪费和低效益(高档原料要出高档产品,中低档原料也要力争做出好产品。)
14、陶瓷废次品(全国每年有1300万吨以上)经处理后使用,可大量节约填埋陶瓷垃圾所需的宝贵土地资源,造福千秋万代。
15、大胆使用红坯体和其它低质材料做陶瓷坯体,可以大大拓宽陶瓷行业的发展前途。
16、实现了废旧低质材料在陶瓷行业中的循环使用,将使我国陶瓷行业与时俱进,为今后长期健康可持续发展打开了一条光明大道。
17、搞好陶瓷原材料在运输、储存、生产过程中的密封处理,就可以大大减少灰尘在环境中的飞扬,造就一个碧水蓝天的清洁环境。
一、当前低温快烧陶瓷的节能概况
从目前世界范围建筑卫生陶瓷制品生产成本比率看,燃料费用在生产成本中所占比率为最大,已经在各国陶瓷行业的总能耗中达到40%以上。目前,全世界的建筑卫生陶瓷工业的发展一直受到高能耗的制约。由于近20年来油、电、燃气及煤炭的价格持续上涨,也遏制着陶瓷业的发展速度。的确国内许多陶瓷企业由于能耗成本居高不下,导致产品价格上扬,降低了市场竞争力还有一些企业由于能源价格上扬,无法承担较高的产品成本而濒临破产在国外一些发达国家,一些企业由于无法消化能源价格高涨的成本问题,而逐渐缩小陶瓷生产,或者尽量到发展中国家去建厂。
现在,陶瓷行业节能的主要努力方面是降低烧成温度与缩短烧成周期。从20世纪70年代以来,建筑卫生陶瓷产品的烧成温度有了大幅度的下降,从而节约了许多宝贵的能源,得以保证了陶瓷工业持续、稳定的发展。如20世纪70年代前,卫生陶瓷烧成温度为1300℃,到了90年代以下降为1150℃-1200℃。釉面砖素烧温度由1180℃下降到1050℃-1100℃,釉烧温度由108原文出处是华夏陶瓷网0℃下降为1020℃。硬质日用瓷由1400℃下降为1300℃-1350℃。炻器烧成由1350℃下降为1220℃-1250℃。骨质瓷素烧温度由1180℃下降为1100℃-1150℃。耐火材料硅砖由1400℃下降为1300℃-1340℃。从以上降低烧成温度成果看,卫生瓷烧成温度下降了100℃-140℃,日用瓷下降了70℃-120℃,釉面砖下降了70℃-130℃等等。由此看来,取得的节能效果是十分显著的。
在推进快烧与缩短烧成周期方面,过去国内的卫生瓷烧成周期需要时间长达40小时,现已普遍降低为10小时左右。釉面砖烧成周期由过去几十个小时,下降为3-4小时左右。由于采用低温快烧工艺,在建筑卫生陶瓷产品领域取得的成绩最为显著。由于大大降低陶瓷产品烧成温度与缩短烧成周期,节能效果显著,也在很大程度上降低了能耗成本。其中采用低温陶瓷原料在生产工艺中发挥了极其重要作用。因此,低温烧成的陶瓷产品其关键在于开发与利用低温陶瓷原料,以保证实现低温快烧生产工艺。
应该说几十年来低温快烧工艺的研究促进了陶瓷节能工作的进展。目前各国陶瓷研究机构已成功筛选出许多种低温陶瓷原料及低温熔剂原料。现在已知可用作低温烧成坯体原料的常规陶瓷矿物原料有硅灰石、透辉石、透闪石、绢云母粘土、叶蜡石、珍珠岩等。现作简要介绍如下。
二、几种常用的低温陶瓷原料
以下简单介绍一下常用的低温陶瓷原料,其中多种已应用于建筑卫生陶瓷的坯料中,取得良好的节能效果。有的已经进行过多次试验,并且显示出良好的工业价值,是将来很有开发利用前途的低温快烧陶瓷原料种类。
1、硅灰石原料
硅灰石属于硅酸钙矿物。自然界中的硅灰石主要存在于不纯的石灰岩与酸性岩浆岩的接触变质带内。在火成岩的富钙片岩中亦可见到。与硅灰石原料伴生的矿物还有透辉石、石榴子石、方解石及石英等。均属陶瓷工业可以采用的原料种类。
硅灰石理论化学成分为sio250.70%,cao48.30%。20世纪70年代中期,我国湖北省大冶及阳新地区最先发现硅灰石矿,其实际化学成分为:sio250.23%,cao44.9%fe2o3为0.29-1.23%。化学成分与美国、日本等国的成分基本相同。硅灰石具有良好的热膨胀特性,它的热膨胀系数随温度增加,呈现直线性上升,因此,非常有利于快速烧成的工艺要求。(硅灰石平均热胀系数为6.30/1000000每摄氏度在室温-200℃之间)。此外,硅灰石熔点温度比较低,为1540℃,尤其在硅灰石与瓷坯中的碱-碱土成分结合时能进行较低温烧成。这一特点也是后来引起陶瓷界,尤其建陶工业非常重视的主要缘故。一般在坯料中掺入10-20%的硅灰石取代长石、石英时,可将陶瓷制品的烧成温度下降80℃-120℃。
硅灰石还具有独特的工艺性能,如使用硅灰石原料后,可以有效的减少坯体收缩率。而且能够降低坯体的吸湿膨胀,防止陶瓷坯体的后期干裂等。含硅灰石的坯体还具有较高的机械强度和较低的介电损失。引入硅灰石的坯体,在烧结过程中成熟速度加快,可以在十几分钟至几十分钟内使坯体成熟,大大降低了单位制品的热损耗,其烧成周期也从过去的90小时,下降为仅仅50分钟。硅灰石最先引入到釉面砖坯料配方中,使面砖的烧成热能损耗由3600大卡/公斤,下降为1850大卡/公斤制品。除釉面砖外,硅灰石原料近年来已扩大了其应用范围。其节能降耗的效果,已为陶瓷业界人士有目共睹。
【 《实现低温快烧工艺的条件》中国陶瓷信息资源网
硅灰石为偏硅酸钙,其化学式为CaSiO3,是一种适用于陶质釉面砖的低温快烧原料,它在坯体中的主要作用机理为:
1. 降低烧成温度机理
1) 在传统的硅铝体系之中,主要的原料为石英、长石、叶腊石、滑石、粘土等,生成的物相主要以莫来石为主。为了实现硅铝体系生成莫来石的反应,需采用1250℃~1300℃之高温,周期要达到40小时以上。而将硅灰石引入到传统的陶质坯体中后,新的体系除了硅铝以外,增加了钙的组分,构成了硅-铝-钙为主要成分的低共熔体系,生成的物相主要是钙长石,而实现这一反应只需要在较低温度的条件下即可,这就是硅灰石能降低烧成温度的机理。
2) 硅灰石陶质坯体配方中的成瓷反应如下:
CaSiO3(硅灰石)+Al2O3·2SiO2·2H2O(粘土)1100℃ CaO·Al2O2·2SiO2(钙长石)+SiO2(方石英或无定形石英)+H2O
CaSiO3(硅灰石)+Al2O3·4SiO2·2H2O(叶腊石)1100℃ CaO·Al2O2·2SiO2(钙长石)+3SiO2(方石英或无定形石英)+H2O 】
2、透辉石原料
透辉石属于硅酸镁-硅酸钙铁类质同象系列中的矿物。它常与磁铁矿及其它含铁矿物共生,矿物特性为浅绿色短柱状晶体。透辉石的化学组成为钙、镁、硅的氧化物组成,其化学分子式为cao’mgo’2sio2。透辉石的理论化学组成为:氧化钙25.8%,氧化镁18.5%,文章出处是华夏陶瓷网二氧化硅55.7%。其实例有我国吉林省透辉石矿主要化学成分为:二氧化硅51.6%-45.71%,氧化铝3.52%-7.29%,氧化铁2.69%-0.27%,二氧化钛0.13%-0.1%,氧化钙23.78%-19.98%,氧化钾和氧化钠0.96%-0.63%。
透辉石的热膨胀系数与硅灰石大体相同,从下表列出的热膨胀系数来看,也是非常适合低温快烧工艺的优质陶瓷原料。透辉石具有的熔剂性质也很独特,如其开始变化温度为1170℃,软化温度为1280℃,熔融温度为1290℃,软化温度范围为110℃,熔融温度范围则为10℃。鉴于此透辉石与硅灰石同样可以有效的减少陶瓷制品坯体的收缩率。引入有透辉石原料的面砖产品,其坯体的总收缩(包括干燥收缩与烧成收缩)仅为0.2%=0.4%。配入透辉石的瓷砖坯体同样可以降低坯体的吸湿膨胀,杜绝釉面砖使用的后期龟裂缺陷,保证使用质量。
作为优秀的低温快烧原料,引入透辉石的建筑陶瓷制品,其烧成温度极低,仅为980℃-1020℃左右,较之硅灰石坯体的烧成温度还要降低100℃左右。因此,将来扩大透辉石原料的使用范围,将具有更大的节能降耗效果,产生更大的经济效益。
3、珍珠岩原料
珍珠岩属于一种酸性火山岩浆喷发的玻璃质熔岩。在珍珠岩内常含有一些透长石、石英的斑晶微晶及各种形态的雏晶及稳晶矿物等,如角闪石刚、叶蜡石、黑云母等等。珍珠岩的化学组成范围一般为二氧化硅68-75%,氧化铝9-14%,氧化铁0.5-4%,二氧化钛0.13-0.2%,氧化镁0.4-1%,氧化钙1-2%,氧化钠2.5-5%,氧化钾1.5-4.5%,水3-6%。珍珠岩的氧化与熔融温度为:开始收缩温度为1025℃,软化温度为1175℃,熔融温度大于1500℃,软化温度范围为150℃,熔化温度范围为325℃。
从上述数据来看,珍珠岩开始收缩的温度比长石低120℃,软化温度低75℃,软化范围加宽95℃。由于这些特性,珍珠岩在陶瓷制品烧成中可以大大降低烧成温度,改进烧结的质量。通过进一步深入研究,珍珠岩还有一种特性,即含有珍珠岩的陶瓷坯体中,莫来石晶体形成较早,从而有利于烧结过程的展开。这样一来,含珍珠岩坯体除具有与长石-石英-黏土(高岭矿物)三元系坯体配方相同的工艺特性之外,还能降低烧成温度(从原来的1280℃降低为1180℃-1160℃),并且具有良好的热稳定性。
三、目前国内低温陶瓷原料的储藏与开发利用现状
通过几十年的勘探与陶瓷原料普查,证明我国低温陶瓷原料储藏非常丰富。一是种类多,二是储藏量大。如硅灰石矿分布在湖北大冶、辽宁铁岭、吉林延边与盘石等地,储量都比较多,此外福建省、江西省、安徽省及湖南河北等地都有发现,有已经开采利用多年。透辉石矿主要分布在东北地区的吉林省及黑龙江省,其矿产储量都在400万吨-500万吨以上。至于珍珠岩矿资源,更为丰富,全国各地均有发现,早已开采利用多年。如辽宁法库、建平县,内蒙古包头、山西灵邱县、吉林九台县、黑龙江穆棱县及河南信阳地区等。有的储量高达数亿吨。这些丰本文拷贝于华夏陶瓷网富的储存都为推广低温快烧陶瓷工艺,提供了物质条件。
20年来,我国陶瓷行业在采用低温陶瓷原料,节约能耗与缩短烧成周期方面,取得许多成果,但仍然有许多不尽人意之处。我国陶瓷企业产品烧成温度仍然普遍高于国外先进企业,能耗及产品成本也高于国外同行。有许多实践证明了的成熟的工艺技术,尚未大规模普及与推广。近年来,又相继开发与研制成功更多种类的低温陶瓷原料,如透闪滑石、锂云母、钙长石、透闪岩,高云母量叶腊石等,更需要普及与推广。随着低温快烧工艺水平的普及与提升,我国陶瓷工业的整体素质与效益将有较大改观,产品的竞争力也会大大加强。
2、陶瓷行业产品成本,直接材料可按产品单位定额分配,直接人工可按计件标准单价分配,燃气动力可按各产品占窑位比例分配,制造费用可按前三项分配额之和分配
3、在产品约当数,
直接材料按釉和泥耗用比计算,例如泥釉耗用比为5比2,那么未施釉的产品按60%计算完工率,施釉后的产品按100%计算完工率。
直接人工完工率,按完工工序工价之和占总工价比例计算完工率
煤气动力,按是否入窑烧练,完工率为0和100%
制造费用按直接人工完工率计算约当产量较合理,因直接材料完工率较高,燃气动力完工率较低,且受工艺限制烧练前发生的多些。
以上三点就可确定成本核算规则办法了,怎样计算成本就已经一目了然了