瓷片电容技术参数有哪些?
瓷片电容技术的发展历程:1900年意大利L.隆巴迪发明陶瓷介质电容;30年代末人们发现在陶瓷中添加钛酸盐可使介电常数成倍增长,因而制造出较便宜的瓷介质电容;1940年前后人们发现了现在的瓷片电容技术参数的主要原材料BaTiO3(钛酸钡)具有绝缘性后,开始将瓷片电容技术参数使用于对既小型、精度要求又极高的军事用电子设备当中
1960年左右陶瓷叠片电容作为商品开始开发
1970年,随着混合IC、计算机、以及便携电子设备的进步也随之迅速的发展起来,瓷片电容成为电子设备中不可缺少的零部件,而其中技术参数也是学者们研究的重点
现在的陶瓷介质电容的全部数量约占电容市场的70%左右
因为陶瓷介质电容的绝缘体材料主要使用陶瓷,其基本构造是将陶瓷和内部电极交相重叠
陶瓷材料有几个种类
自从考虑电子产品无害化特别是无铅化后,高介电系数的PB(铅)退出瓷片电容技术参数领域,现在主要使用TiO2(二氧化钛)、BaTiO3,CaZrO3(锆酸钙)等
和其它的电容相比具有体积小、容量大、耐热性好、适合批量生产、价格低等优点
由于原材料丰富,结构简单,价格低廉,而且电容量范围较宽(一般有几个PF到上百μF),损耗较小,电容量温度系数可根据要求在很大范围内调整
瓷片电容技术参数品种繁多,外形尺寸相差甚大从0402(约1×0.5mm)封装的贴片电容到大型的功率瓷片电容
按使用的介质材料特性可分为Ⅰ型、Ⅱ型和半导体瓷片电容;按无功功率大小可分为低功率、高功率瓷片电容;按工作电压可分为低压和高压瓷片电容;按结构形状可分为圆片形、管型、鼓形、瓶形、筒形、板形、叠片、独石、块状、支柱式、穿心式等
瓷片电容的分类:瓷片电容技术参数从介质类型主要可以分为两类,即Ⅰ类瓷片电容技术参数和Ⅱ类瓷片电容技术参数
Ⅰ类瓷片电容技术参数(ClassⅠceramiccapacitor),过去称高频瓷片电容技术参数(High-freqencyceramiccapacitor),是指用介质损耗小、绝缘电阻高、介电常数随温度呈线性变化的陶瓷介质制造的电容
它特别适用于谐振回路,以及其它要求损耗小和电容量稳定的电路,或用于温度补偿
Ⅱ类瓷片电容技术参数(ClassⅡceramiccapacitor)过去称为为低频瓷片电容技术参数(Lowfrequencycermiccapacitor),指用铁电陶瓷作介质的电容,因此也称铁电瓷片电容技术参数
这类电容的比电容大,电容量随温度呈非线性变化,损耗较大,常在电子设备中用于旁路、耦合或用于其它对损耗和电容量稳定性要求不高的电路中
常见的Ⅱ类瓷片电容技术参数有:X7R、X5R、Y5V、Z5U其中:X7R表示为:第一位X为最低工作温度-55℃,第二位的数字7位最高工作温度+125℃,第三位字母R为随温度变化的容值偏差±15%;X5R表示为:第一位X为最低工作温度-55℃,第二位的数字5位最高工作温度+85℃,第三位字母R为随温度变化的容值偏差±15%;Y5V表示为:第一位Y为最低工作温度-30℃,第二位的数字5位最高工作温度+85℃,第三位字母V为随温度变化的容值偏差+22%,-82%±15%
Z5U表示为:第一位Z为最低工作温度+10℃,第二位的数字5位最高工作温度+85℃,第三位字母U为随温度变化的容值偏差+22%,-56%
470K50Ⅴ电容的容量是47pf耐压50伏,一般是瓷片电容。k是误差是10/100。
1、如果从小瓷片电容的标识数字看不懂容量,多看看电路板其它瓷片,比较瓷片体积,体积小容量就小,这个470K50Ⅴ电容体积非常小,所以不会是470pf,更不会是470000pf。
2、可以在同一块电路板上类比其它瓷片电容的数值标称方法,如果误认为470K的【k】是表示470后边再加3个0,是470000pf,而470000是0.47uf,那么如果另一个瓷片电容标474k就没法读了,实际474k才是47加4个0,才是470000,它才是0.47uf的电容,体积也比470K电容大多了。
综上,如下标称的电容容量是多少呢?470k=47pf。471k=470pf。472k=4700pf---
类似的标称如,100k,=10pf。101k=100pf。102k=1000pf----
还有如1n8J和182k容量都是1800pf。如3n3=3300pf----
尾标J误差5/100。尾标k10/100。修理可以忽略误差互相代换。
电容是由两个金属极,中间夹有绝缘材料(介质)构成的。由于绝缘材料的不同,
所构成的电容器的种类也有所不同
按结构分:固定电容,可变电容,微调电容;
介质材料分:按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容。
按极性分为:有极性电容和无极性电容。
电容作用:电容在电路中具有隔断直流电,通过交流电的作用,因此常用于级间耦合、滤波、去耦、旁路及信号调谐等。
表示方法:
瓷片电容: 多数在1μF以下,
①直接用数字表示。如: 10、22、0.047、0.1 等等, 这里要注意的是单位。凡用整数表示的, 单位默认pF; 凡用小数表示的,单位默认μF。如以上例子中, 分别是10P、22P、0.047μF、220μF 等。
②现在国际上流行另一种类似色环电阻的表示方法( 单位默认pF) :
前两个数字表示有效读数,第三个数字表示后面追加的“0”的个数。
如: “ 473”(即47加三个0)=47000pF=0.047μF ,
“ 103”即(10+000)pF=10000PF=0.01μF等等, 这种表示法已经相当普遍。
瓷片电容的耐压一般在25V到50V之间。
瓷片电容:是电子元器件,主要由陶瓷的材料做成的隔离介子,属于绝缘体。大量用于中大型电子设备和微小型单片机。
耐压值:是一个设计标称值,表明这种类型的电容器能够在此电压以下长期工作。进行检验耐压值是在该电容器两端施加超过这个数值的电压。比如:标称耐压200V的电容器施加500V一分钟或几分钟没有发生放电或炸裂等现象,则说明其在200V电压下能够长期工作,以上举例只是假设数值,为了能够形象了解耐压参数,具体的施加电压要看制造厂的标准,也有可能不是逐个检验,只是抽样检验。
参考资料
卢本.设计与分析.天津:天津大学出版社,2003
型号命名
1、名称,用字母表示,电容器用C。
2、材料,用字母表示。A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电解、G-合金电解、H-复合介质、I-玻璃釉、J-金属化纸、L-涤纶等极性有机薄膜、N-铌电解、O-玻璃膜、Q-漆膜、T-低频陶瓷、V-云母纸、Y-云母、Z-纸介。
3、分类,一般用数字表示,个别用字母表示。
数字:
字母:T-电铁、W-微调、J-金属化、X-小型、S-独石、D-低压、M-密封。
4、序号,用数字或字母表示。包括品种、尺寸代号、温度特性、直流工作电压、标称值、允许误差、标准代号。
容量标示
1、直标法
用数字和单位符号直接标出。如1表示1微法,有些电容用“R”表示小数点,如R56表示0.56微法。
2、文字符号法
用数字和文字符号有规律的组合来表示容量。如p10表示0.1pF、1p0表示1pF、6P8表示6.8pF、2u2表示2.2uF。
3、色标法
用色环或色点表示电容器的主要参数。电容器的色标法与电阻相同。
扩展资料
固定电容器的检测方法:
检测10pF以下的小电容:因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。
测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。
检测10PF~001μF固定电容器:通过判断是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。
可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。
应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。
对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。
参考资料来源:百度百科—电容器
x电容是跨接在电力线两线(L-N)之间的电容,一般选用金属薄膜电容;Y电容是分别跨接在电力线两线和地之间(L-E,N-E)的电容,一般是成对出现。
基于漏电流的限制,Y电容值不能太大,一般X电容是uF级,Y电容是nF级。X电容抑制差模干扰,Y电容抑制共模干扰。1.作为安全电容的Y电容,要求必须取得安全检测机构的认证。
Y 电容外观多为橙色或蓝色,一般都标有安全认证标志(如UL、CSA 等标识)和耐压AC250V 或AC275V 字样。
然而,其真正的直流耐压高达5000V 以上。必须强调,Y电容不得随意使用标称耐压AC250V 或者DC400V 之类的普通电容来代用。
2.作为安全电容之一的X电容,也要求必须取得安全检测机构的认证。X 电容一般都标有安全认证标志和耐压AC250V 或AC275V 字样,但其真正的直流耐压高达2000V 以上,使用的时候不要随意使用标称耐压AC250V 或者DC400V 之类的的普通电容来代用。
一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。
如:102表示10×10的2次方PF=1000PF 224表示22×10的4次方PF=0.22 uF
瓷片电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。
电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法 (μF)/mju:/、纳法(nF)、皮法(pF)。其中:1法拉=1000毫法(mF),1毫法=1000微法(μF),1微法=1000纳法 (nF),1纳法=1000皮法(pF)
1、容量大的电容其容量值在电容上直接标明,如10 μF/16V;
2、容量小的电容其容量值在电容上用字母表示或数字表示;
字母表示法:
1m=1000μF
1P=1pF(如470P=470pF)
1P2=1.2PF
1n=1000PF;
数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数字,第三位数字表示有效数字后面零的个数,它们的单位都是pF。
如:
102表示标称容量为10×10²pF=1000pF;
104表示标称容量为10×(10^4)pF=100000pF;
470表示标称容量为47pF;
223表示标称容量为(22×(10^3))pF(即22000pF)。
在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数字乘上10的-1次方来表示容量大小。
如:229表示标称容量为22x10^(-1)pF=2.2pF。
电容(电容器),(Capacitor)电路缩写为C,电容单位法拉,用字母“F”表示.电容是用来储存电荷的容器,简称电容器.电容器是一种储能元件,在电路中用于调谐、滤波、耦合、旁路、能量转换和延时.
电容器是由两片相距很近的金属中间用某介质(固、液、气体)隔离而构成的.金属板也叫电容极板.按其结构可分为固定电容器、半可变电容器、可变电容器三种.
1. 常用电容的结构和特点
常用的电容器按其介质材料可分为电解电容器、云母电容器、瓷介电容器、玻璃釉电容等.
其在电路中的符号表示:
作用是:1、存储电荷 2、隔直通交 3、滤波 4、耦合 5、旁路 等等.
存储电荷:平时我们照相机的闪光灯,就是*电容器储积电荷然后在一瞬间释放出来
滤波:电容器对电波或电磁波、信号等起过滤作用
电容的种类有很多,可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上可以分为:CBB电容(聚乙烯)、聚丙稀电容、涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等.使用电容还有一个指标,那就用多大的容量,这就涉及到额定值读数了.电解电容很容易读数,直接在上面看厂商标出容量和负极性,工作环境,最高工作电压值.瓷片电容就比较难一点.小于100P会标出多少P.当标值为474时.首先知道第一、二位是有效数值,如上例中的47,第三位代表10的指数(简单地说就是在前面两位数后面补几个0) ,如上例中的4.那么474表示47×10000=470000PF.
电容的单位法拉(F),法拉这个单位很大很大.我们很少用到,常用的是微法(UF)、皮法(pF).它们之间的转换为:1F=1000000 uF 1uF= 1000000 pF.上面所提到的474就等于0.47uF.
二、电容器检测的一般方法
1.固定电容器的检测.
A检测10pF以下的小电容 .因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象.测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大.若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿.
B检测10PF~001μF固定电容器是否有充电现象,进而判断其好坏.万用表选用R×1k挡.两只三极管的β值均为100以上,且穿透电流要小.可选用3DG6等型号硅三极管组成复合管.万用表的红和黑表笔分别与复合管的发射极e和集电极c相接.由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察.应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动.C对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量.
2.电解电容器的检测
A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程.根据经验,一般情况下,47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量.
B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置.此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻.实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作.在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用.
C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别.即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值.两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极.
D使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量.
3.可变电容器的检测
A用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象.将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象.
B用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象.转轴与动片之间接触不良的可变电容器,是不能再继续使用的.
C将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动.在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象.
如果你有示波器的话,使用示波器测量MOS管的VDS电压,先增加个10nF,看VDS的电压是否有足够的余量。余量不足就加大电容容值,余量够了就可以减小容值。 另外需要看下吸收电阻的功率是否足够.