陶瓷的烧结方法有哪些?
按传质分类:
固相烧结(只有固相传质)
液相烧结(出现液相)
气相烧结(蒸汽压较高)
按压力分类:常压烧结、压力烧结
按气氛分类:普通烧结、氢气烧结、真空烧结
按反应分类:
固相烧结
液相烧结
气相烧结
活化烧结
反应烧结
特种烧结包括:热压烧结、反应热压烧结、热等静压烧结、微波烧结、超高压烧结、真空(加压)烧结、气氛烧结(气压烧结)、原位加压成型烧结法
陶瓷是硬度仅次于金刚石的少数几种无机非金属材料,冷加工困难。建议你们改变工艺,压成片状再加工会更好!既然要用等静压,就说明你说的这种粉料烧成容易变形!那么就应该选用片状等静压工艺为好,这样成本低、工艺简单。不管管状、片状,等静压后的烧成制度是一样的,只是保温时间有差别!(干压的与等静压的烧成制度不一样)。
真空热压--真空热压法是利用热能和机械能使陶瓷材料致密化的工艺,可生产密度为91%~96%的高密度ITO陶瓷靶材.过程如下:加热模具,加入样品,将模型固定在加热板上(控制熔化温度和时间),然后将样品熔化、硬化、冷却,最后就可以取出成品了出去.
热等静压--热等静压 (HIP)可以认为是加压烧结或高温压制.与传统的无压烧结相比,热等静压法可以在较低的温度下(一般为材料熔点的0.5~0.7倍左右)使材料完全致密.它可以很好地控制结构,抑制晶粒长大并获得均匀、各向同性的结构.热等静压制备ITO靶材的过程如下.首先,将ITO固溶体粉末在一定的还原气氛(如H2、N2和H2的混合物)和300~500℃的温度下进行部分还原.然后,通过模塑或冷等静压将还原的粉末压制成预制件.预制件被放置在不锈钢容器中,它们之间有绝缘材料.然后将容器抽真空并密封.最后,将容器放入800~1050℃、50~200MPa的热等静压炉中2~6小时,制备ITO靶材.
常温烧结--室温烧结是1990年代初期发展起来的一种靶材制备方法.它采用预压法(或浆液浇注法)制备高密度靶材预制件,然后在一定气氛和温度下烧结.常压烧结法的主要工艺过程是:将In2O3粉体(具有一定振实密度)与SnO2粉体混合,制备成泥浆浇铸用的料浆.然后在300~500℃的温度下进行长时间的脱水脱脂处理,最后在纯氧或空气气氛下,在1个大气压以上的压力下进行烧结,烧结温度为1450 至 1550 °C.
冷等静压--冷等静压(CIP)在常温下以橡胶或塑料为覆盖模具材料,以液体为压力介质传递超高压.在低压氧气氛的保护下,将ITO粉体通过冷等静压压制成大型陶瓷预制棒,然后在0.1~0.9 MPa的纯氧环境中,在1500~1600℃的高温下烧结.这种方法理论上可以生产出密度为95%的陶瓷靶材.
先进陶瓷的制备工艺过程包括粉体制备、成型、烧结和精加工等。其中,烧结是将陶瓷坯体在高温下进行致密,最终形成固体材料的一种技术,烧结技术在先进陶瓷的生产过程中起着至关重要的作用。常见的烧结方式有常压烧结、热压烧结、热等静压烧结和微波烧结等,其中,热压烧结是目前采用的比较广泛的一种方法。
热压烧结是对较难烧结的粉体在模具内施加压力,同时升温烧结的工艺。把原料粉末装入金属或高强石墨模腔,在加压的同时,加压到正常烧结温度或稍低,在短时间内粉末被烧结成致密、均匀、晶粒细小的陶瓷材料。热压烧结用的模具材料有石墨、氧化铜、碳化硅等,其中,石墨材料得到了较为广泛的应用。
热压烧结过程中根据加压方式的不同可以分为恒压法、高温加压法、分段加压法,按烧结方式又可分为真空烧结、气氛烧结、连续加压烧结等。
与其他烧结方式相比,热压烧结工艺具有以下优点:热压烧结工艺由于加热加压同时进行,粉料处于热塑性状态有助于颗粒的接触扩散流动并有利于传质过程的进行,因而成型压力较小;还能降低烧结温度并缩短烧结时间从而抵制晶粒长大得到晶粒细小、致密度较高、并具有较高的机械性能和较高的力学性能的产品,无需添加烧结助剂或成型助剂可生产超高纯度的陶瓷产品。
热压烧结工艺的缺点是烧结过程比较复杂以及热压烧结设备比较复杂,对设备要求高,加工成本高且生产效率低,而且只能制备形状较为简单的产品。
2、常规粉末烧结是按粉末原料的组成,烧结可分为粉末固相烧结和粉末液相烧结。
经过成型、上釉后的半成品,只有在高温的作用下,发生一系列物理化学反应,最后显气孔率接近于零,才能达到完全致密程度的瓷化现象,称之为“烧结”。
等静压工作原理为帕斯卡定律:“在密闭容器内的介质(液体或气体)压强,可以向各个方向均等地传递。” 等静压技术已有70多年的历史,初期主要应用于粉末冶金的粉体成型;近20年来,等静压技术已广泛应用于陶瓷铸造、原子能、工具制造、塑料、超高压食品灭菌和石墨、陶瓷、永磁体、高压电磁瓷瓶、生物药物制备、食品保鲜、高性能材料、军工等领域。 冷等静压技术,(Cold Isostatic Pressing,简称CIP)
是在常温下,通常用橡胶或塑料作包套模具材料,以液体为压力介质 主要用于粉体材料成型,为进一步烧结,煅造或热等静压工序提供坯体。一般使用压力为100~ 630MPa。 热等静压技术(hot isostatic pressing,简称HIP)
HIP ,是一种在高温和高压同时作用下,使物料经受等静压的工艺技术,它不仅用于粉末体的固结.传统粉末冶金工艺成型与烧结两步作业一并完成,而且还用于工件的扩散粘结,铸件缺陷的消除,复杂形状零件的制作等。在热等静压中,一般采用氩、氨等惰性气体作压力传递介质,包套材料通常用金属或玻璃。工作温度一般为1000~2200℃ ,工作压力常为100~200MPa。 等静压技术作为一种成型工艺,与常规成型技术相比,具有以下特点:a.等静压成型的制品密度高,一般要比单向和双向模压成型高5 ~l5 。热等静压制品相对密度可达99 8%~99.09% 。
b.压坯的密度均匀一致。在模压成型中,无论是单向、还是双向压制,都会出现压坯密度分布不均现象。这种密度的变化在压制复杂形状制品时,往往可达到10% 以上。这是由于粉料与钢模之间的摩擦阻力造成的。等静压流体介质传递压力,在各方向上相等。包套与粉料受压缩大体一致,粉料与包套无相对运动,它们之间的摩擦阻力很少,压力只有轻微地下降,这种密度下降梯度一般只有1% 以下,因此,可认为坯体密度是均匀的。
c-因为密度均匀.所以制作长径比可不受限制,这就有利于生产棒状、管状细而长的产品。
d.等静压成型工艺,一般不需要在粉料中添加润滑剂,这样既减少了对制品的污染,又简化了制造工序。
e.等静压成型的制品,性能优异,生产周期短,应用范围广。等静压成型工艺的缺点是,工艺效率较
低,设备昴贵。本文着重介绍冷等静压技术的应用,以及冷等静压设备的一些情况。
与块状物相比,粉体具有很大的比表面积,这是外界对粉体做功的结果。利用机械作用或化学作用来制备粉体时所消耗的机械能或化学能,部分将作为表面能而贮存在粉体中,此外,在粉体的制备过程中,又会引起粉粒表面及其内部出现各种晶格缺陷,使晶格活化。由于这些原因,粉体具有较高的表面自由能。粉体的这种表面能是其烧结的内在动力。因此,Al2O3粉体的颗粒越细,活化程度越高,粉体就越容易烧结,烧结温度越低。在氧化铝瓷低温烧结技术中,使用高活性易烧结Al2O3粉体作原料是重要的手段之一,因而粉体制备技术成为陶瓷低温烧结技术中一个基础环节。
目前,制备超细活化易烧结Al2O3粉体的方法分为二大类,一类是机械法,另一类是化学法。机械法是用机械外力作用使Al2O3粉体颗粒细化,常用的粉碎工艺有球磨粉碎、振磨粉碎、砂磨粉碎、气流粉碎等等。通过机械粉碎方法来提高粉料的比表面积,尽管是有效的,但有一定限度,通常只能使粉料的平均粒径小至1μm左右或更细一点,而且有粒径分布范围较宽,容易带入杂质的缺点。近年来,采用湿化学法制造超细高纯Al2O3粉体发展较快,其中较为成熟的是溶胶—凝胶法。由于溶胶高度稳定,因而可将多种金属离子均匀、稳定地分布于胶体中,通过进一步脱水形成均匀的凝胶(无定形体),再经过合适的处理便可获得活性极高的超微粉混合氧化物或均一的固溶体。目前此法大致有以下3种工艺流程。(1)形成金属氧有机基络合物溶胶→水解并缩合成含羟基的三度空间高分子结构→溶胶蒸发脱水成凝胶→低温煅烧成活性氧化物粉料。(2)含有不同金属离子的酸盐溶液和有机胶混合成溶液→溶胶蒸发脱水成凝胶→低温煅烧成粉体。(3)含有不同金属离子的溶胶直接淬火、沉积或加热成凝胶→低温煅烧成粉体。湿化学法制备的Al2O3粉体粒径可达到纳米级,粒径分布范围窄,化学纯度高,晶体缺陷多。因此化学法粉体的表面能与活性比机械法粉体要高得多。采用这种超细Al2O3粉体作原料不仅能明显降低氧化铝瓷的烧结温度(可降150℃—300℃),而且可以获得微晶高强的高铝瓷材料。表二是日本住友化学有限公司生产的易烧结Al2O3粉料理化指标。
此外,有专家推荐以下三种超细Al2O3粉体制备方法,仅供参考:(1)将(NH4)SO4Al2(SO4)3·2H2O与(MgCO3)4Mg(OH)2·5H2O混合、加热到1200℃分解,可获得含有MgO的纯度为99%、粒度为02~05μm的α—Al2O3超细粉料。(2)将无水二醋酸铝加热到1200℃保温3小时以上,可获得粒度小于05μm的α—Al2O3超细粉体。(3)铁筒钢球,湿磨数百小时,浆料加热酸洗除铁,浮选,反复多次,可制取粒度03—05μm的α—Al2O3超细粉料。
二、通过瓷料配方设计掺杂降低瓷体烧结温度
氧化铝陶瓷的烧结温度主要由其化学组成中Al2O3的含量来决定,Al2O3含量越高,瓷料的烧结温度越高,除此之外,还与瓷料组成系统、各组成配比以及添加物种类有关。比如,在Al2O3含量相当时,CaO-Al2O3-SiO2系Al2O3瓷料比MgO-Al2O3-SiO2系瓷料的烧结温度低,对于我国目前大量生产的CaO-MgO-Al2O3-SiO2系统瓷料而言,为使其具有较低的烧结温度与良好性能,应控制其SiO2/CaO处于16~06之内,MgO含量不超过熔剂类氧化物总量的1/3,同时,在配方中引入少量的La2O3、Y2O3、Cr2O3、MnO、TiO2、ZrO2、Ta2O3等氧化物能进一步降低烧结温度、改善瓷体的微观组织结构和性能。因此,在保证瓷体满足产品使用目的和技术要求的前提下,我们可以通过配方设计,选择合理的瓷料系统,加入适当的助烧添加剂,使氧化铝陶瓷的烧结温度尽可能降低。
目前配方设计中所加入的各种添加剂,根据其促进氧化铝陶瓷烧结的作用机理不同,可以将它们分为形成新相或固溶体的添加剂和生成液相的添加剂二大类。
1、与Al2O3形成新相或固溶体的添加剂。
这类添加剂是一些与氧化铝晶格常数相接近的氧化物,如TiO2、Cr2O3、Fe2O3、MnO2等,在烧成中,这些添加物能与Al2O3生成固溶体,这类固溶体或为掺入固溶体(如Ti4+置换Al3+时),或为有限固溶体,或为连续固溶体(如Cr2O3与Al2O3形成的),它们可以活化晶格(TI4+、Al3+离子半径差所致)、形成空穴或迁移原子,(3TiO2AbO33Tia1+Va1+60)以及使晶格产生变形,这些作用使得Al2O3陶瓷易于重结晶而烧结。例如添加05~10%的TiO2时,可使瓷体的烧结温度下降150—200℃。以固相烧结方式为主的高铝瓷常采用这类添加剂,例如某黑色氧化铝陶瓷配方如下(wt%):Al2O391、CoO05、MnO237、Cr2O321、SiO204、TiO220、V2O303,该瓷料在1350℃下保温2小时烧成。
这类添加剂促进氧化铝瓷烧结的作用具有一定的规律性:①能与Al2O3形成有限固溶体的添加剂较形成连续固溶体的添加剂的降温作用更大;②可变价离子一类添加剂比不变价的添加剂的作用大;③阳离子电荷多的、电价高的添加剂的降温作用更大。需要注意的是,由于这类添加剂是在缺少液相的条件下烧结的(重结晶烧结),故晶体内的气孔较难填充,气密性较差,因而电气性能下降较多,在配方设计时要加以考虑。
2、烧成中形成液相的添加剂。
这类添加剂的化学成分主要有SiO2、CaO、MgO、SrO、BaO等,它们能与其它成分在烧成过程中形成二元、三元或多元低共熔物。由于液相的生成温度低,因而大大地降低了氧化铝瓷的烧结温度。当有相当量(约12%)的液相出现,固体颗粒在液相中有一定的溶解度及固相颗粒能被液相润湿时,其促进烧结作用也更显著。其作用机理在于液相对固相表面的润湿力及表面张力,两者使得固相颗粒靠近并填充气孔。此外,烧结过程中因细小有缺陷的晶体表面活性大,故在液相中的溶解度要比大晶体的大得多。这样,烧结过程中小晶体不断长大,气孔减小,出现重结晶。为了防止因重结晶使晶粒过分长大,影响陶瓷的机械性能,在配方设计中需考虑选用一些对晶粒增大无影响甚至能抑制晶粒增大的添加物,如MgO、CuO和NiO等。
目前,在液相烧结的Al2O3瓷料配方中,助烧添加剂可以采用以下3种物料形态来加入。①以天然矿物形态加入。这类矿物原料主要有:高岭土、膨润土等粘土矿。石英、滑石、菱镁矿、白云石、方解石等等,它们分别引入SiO2、MgO、CaO等化学成分。配方中高岭土及其它粘土矿物的使用,除了满足瓷体化学组成要求外,更主要可以改善坯料的成型性能。添加剂的这种加入形式适用于Al2O3含量在90%以下的中铝瓷配料,例如某低温烧结75瓷配方如下(wt%):煅烧Al2O365、高岭土24、膨润土2、BaCO34、方解石3、生滑石2。
②、以人工合成添加剂形态加入。此法是在CaO-Al2O3-SiO2、MgO-Al2O3-SiO2、CaO-MgO-Al2O3-SiO2等三元、四元或其它相图中找到最低共溶物的组成点,预先按组成点的成分将CaO、MgO、SiO2、Al2O3等所需化合物进行第一次配料,经球磨、煅烧成为低共熔物,即“人工合成添加剂”,然后按一定配比将人工合成添加剂与Al2O3粉料进行第二次配料,以满足氧化铝陶瓷化学组成和性能要求。此法纯度高,主要用于降低化学组成准确、性能要求高的高铝瓷烧结温度,缺点是工艺复杂,能耗高,制品成本高,只在特殊情况下采用。
③以化工原料形态加入。在配料时,直接将各种化工原料作为添加剂与Al2O3粉体一起一次完成配料,各助烧添加剂的组成比例仍然是参照专业相图中最低共熔点的组成来设定。生产实践证明,此法不仅与人工合成添加剂法具有同样的降温效果,而且大大简化了工艺,无论配方设计、配料计算和工艺过程都比人工合成添加剂法简便,也比天然矿物形态更容易,瓷质性能稳定,节能效益显著。在实际生产中,从降低成本和坯料成型性能方面考虑,天然矿物原料和化工原料往往是同时使用的。例如某低温烧成(1500℃×2h)的高铝瓷配方如下(wt%);α-Al2O393、苏州土3、烧骨石2、CaCO315、BaCO305、外加ZrO2、CeO2、La2O32%。
三、采用特殊烧成工艺降低瓷体烧结温度
采用热压烧结工艺,在对坯体加热的同时进行加压,那么烧结不仅是通过扩散传质来完成,此时塑性流动起了重要作用,坯体的烧结温度将比常压烧结低很多,因此热压烧结是降低Al2O3陶瓷烧结温度的重要技术之一。目前热压烧结法中有压力烧结法和高温等静压烧结法(HIP)二种。HIP法可使坯体受到各向同性的压力,陶瓷的显微结构比压力烧结法更加均匀。就氧化铝瓷而言,如果常压下普通烧结必须烧至1800℃以上的高温,热压20MPa烧结,在1000℃左右的较低温度下就已致密化了。
热压烧结技术不仅显著降低氧化铝瓷的烧结温度,而且能较好地抑制晶粒长大,能够获得致密的微晶高强的氧化铝陶瓷,特别适合透明氧化铝陶瓷和微晶刚玉瓷的烧结。
此外,由于氧化铝的烧结过程与阴离子的扩散速率有关,而还原气氛有利于阴离子空位的增加,可促进烧结的进行。因此,真空烧结、氢气氛烧结等是实现氧化铝瓷低温烧结的有效辅助手段。
在生产实践中,为获得最佳综合经济效益,上述低烧技术往往相互配合使用,其中加入助烧添加剂的方法相对其它方法而言,具有成本低、效果好、工艺简便实用的特点。在中铝瓷、高铝瓷和刚玉瓷的生产中被广泛使用。另外,从材料角度来看,通过掺杂改性技术,大幅度提高氧化铝陶瓷的各项机电性能,用Al2O3含量低的瓷体代替Al2O3含量高的瓷体,也是企业常用的降低氧化铝陶瓷产品烧结温度的有效技术手段。比如在材料性能满足产品使用要求下,用85瓷代替90瓷或95瓷,用90瓷、95瓷代替99瓷等都是可行的。
虽然氧化铝瓷低烧技术已取得较好的经济效益,但仍有潜力可挖,目前仍有一些产品,从材料的特殊性能要求和高温状态下器件的尺寸稳定性考虑,仍然采用高温烧结,如何将这类产品的烧结温度也降下来,是今后瓷体掺杂改性等低烧技术的努力方向。