PCB电源线规则
PCB电源线规则:
1、芯片的电源引脚和地线引脚之间应进行去耦。去耦电容采用0.01uF的片式电容,应贴近芯片安装,使去耦电容的回路面积尽可能减小。。
2、尽量加宽电源线、地线宽度,最好是地线比电源线宽。它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5mm。
3、数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用,模拟电路的地不能这样使用。
4、用大面积铜层作地线,在印制板上把没被用上的地方都与地相连接作为地线用,或是做成多层板,电源和地线各占用一层。
5、一般都是就近接地,但要区分模拟和数字地:模拟器件就接模拟地,数字器件就接数字地;大信号地和小信号地也分开来。
6、同时具有模拟和数字功能的电路板,模拟地和数字地通常是分离的,只在电源处连接避免相互干扰。不要把数字电源与模拟电源重叠放置,否则就会产生耦合电容,破坏分离度。
7、应避免梳状地线,这种结构使信号回流环路很大,会增加辐射和敏感度,并且芯片之间的公共阻抗也可能造成电路的误操作。
8、选用贴片式芯片时,尽量选用电源引脚与地引脚靠得较近的芯片,可以进一步减小去耦电容的供电回路面积,有利于实现电磁兼容。板上装有多个芯片时,地线上会出现较大的电位差,应把地线设计成封闭环路,提高电路的噪声容限。
9、电源线尽可能靠近地线以减小供电环路面积,差模辐射小,有助于减小电路交扰。不同电源的供电环路不要相互重叠。
扩展资料:
PCB电源布线技巧:
1、旁路瓷片电容器的电容不能太大,而它的寄生串联电感应尽量小,多个电容并联能改善电容的阻抗特性。
2、电感的寄生并联电容应尽量小,电感引脚焊盘之间的距离越远越好。
3、避免在地层上放置任何功率或信号走线。
4、高频环路的面积应尽可能减小。
5、过孔放置不应破坏高频电流在地层上的路径。
6、系统板上一小同电路需要不同接地层,小同电路的接地层通过单点与电源接地层相连接。
7、控制芯片至上端和下端场效应管的驱动电路环路要尽量短。
8、开关电源功率电路和控制信号电路元器件需要连接到小同的接地层,这二个地层一般都是通过单点相连接。
参考资料来源:百度百科-PCB
1. 一般规则
1.1 PCB板上预划分数字、模拟、DAA信号布线区域。
1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3 高速数字信号走线尽量短。
1.4 敏感模拟信号走线尽量短。
1.5 合理分配电源和地。
1.6 DGND、AGND、实地分开。
1.7 电源及临界信号走线使用宽线。
1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2. 元器件放置
2.1 在系统电路原理图中:
a) 划分数字、模拟、DAA电路及其相关电路;
b) 在各个电路中划分数字、模拟、混合数字/模拟元器件;
c) 注意各IC芯片电源和信号引脚的定位。
2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3 初步划分完毕后,从Connector和Jack开始放置元器件:
a) Connector和Jack周围留出插件的位置;
b) 元器件周围留出电源和地走线的空间;
c) Socket周围留出相应插件的位置。
2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):
a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;
b) 将元器件放置在数字和模拟信号布线区域的交界处。
2.5 放置所有的模拟器件:
a) 放置模拟电路元器件,包括DAA电路;
b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面;
c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件;
d) 对於串行DTE模块,DTE EIA/TIA-232-E
系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如阻流圈和电容等。
2.6 放置数字元器件及去耦电容:
a) 数字元器件集中放置以减少走线长度;
b) 在IC的电源/地间放置0.1uF的去耦电容,连接走线尽量短以减小EMI;
c) 对并行总线模块,元器件紧靠
Connector边缘放置,以符合应用总线接口标准,如ISA总线走线长度限定在2.5in;
d) 对串行DTE模块,接口电路靠近Connector;
e) 晶振电路尽量靠近其驱动器件。
2.7 各区域的地线,通常用0 Ohm电阻或bead在一点或多点相连。
3. 信号走线
3.1 Modem信号走线中,易产生噪声的信号线和易受干扰的信号线尽量远离,如无法避免时要用中性信号线隔离。
Modem易产生噪声的信号引脚、中性信号引脚、易受干扰的信号引脚如下表所示:
3.2 数字信号走线尽量放置在数字信号布线区域内;
模拟信号走线尽量放置在模拟信号布线区域内;
(可预先放置隔离走线加以限定,以防走线布出布线区域)
数字信号走线和模拟信号走线垂直以减小交叉耦合。
3.3 使用隔离走线(通常为地)将模拟信号走线限定在模拟信号布线区域。
a) 模拟区隔离地走线环绕模拟信号布线区域布在PCB板两面,线宽50-100mil;
b) 数字区隔离地走线环绕数字信号布线区域布在PCB板两面,线宽50-100mil,其中一面PCB板边应布200mil宽度。
3.4 并行总线接口信号走线线宽>10mil(一般为12-15mil),如/HCS、/HRD、/HWT、/RESET。
3.5 模拟信号走线线宽>10mil(一般为12-15mil),如MICM、MICV、SPKV、VC、VREF、TXA1、TXA2、RXA、TELIN、TELOUT。
3.6 所有其它信号走线尽量宽,线宽>5mil(一般为 10mil),元器件间走线尽量短(放置器件时应预先考虑)。
3.7 旁路电容到相应IC的走线线宽>25mil,并尽量避免使用过孔。
3.8 通过不同区域的信号线(如典型的低速控制/状态信号)应在一点(首选)或两点通过隔离地线。如果走线只位於一面, 隔离地线可走到PCB的另一面以跳过信号走线而保持连续。
3.9 高频信号走线避免使用90度角弯转,应使用平滑圆弧或45度角。
3.10 高频信号走线应减少使用过孔连接。
3.11 所有信号走线远离晶振电路。
3.12 对高频信号走线应采用单一连续走线,避免出现从一点延伸出几段走线的情况。
3.13 DAA电路中,穿孔周围(所有层面)留出至少60mil的空间。
3.14 清除地线环路,以防意外电流回馈影响电源。
4. 电源
4.1 确定电源连接关系。
4.2 数字信号布线区域中,用10uF电解电容或钽电容与0.1uF瓷片电容并联后接在电源/地之间.在PCB板电源入口端和最远端各放置一处,以防电源尖峰脉冲引发的噪声干扰。
4.3 对双面板,在用电电路相同层面中,用两边线宽为 200mil的电源走线环绕该电路。(另一面须用数字地做相同处理)
4.4 一般地,先布电源走线,再布信号走线。
5. 地
5.1双面板中,数字和模拟元器件(除DAA)周围及下方未使用之区域用数字地或模拟地区域填充,各层面同类地区域连接在一起,不同层面同类地区域通过多个过孔相连:Modem DGND引脚接至数字地区域,AGND引脚接至模拟地区域数字地区域和模拟地区域用一条直的空隙隔开。
5.2 四层板中,使用数字和模拟地区域覆盖数字和模拟元器件(除DAA);Modem DGND引脚接至数字地区域,AGND引脚接至模拟地区域数字地区域和模拟地区域用一条直的空隙隔开。
5.3 如设计中须EMI过滤器,应在接口插座端预留一定空间,绝大多数EMI器件(Bead/电容)均可放置在该区域未使用之区域用地区域填充,如有屏蔽外壳也须与之相连。
5.4 每个功能模块电源应分开。功能模块可分为:并行总线接口、显示、数字电路(SRAM、EPROM、Modem)和DAA等,每个功能模块的电源/地只能在电源/地的源点相连。
5.5 对串行DTE模块,使用去耦电容减少电源耦合,对电话线也可做相同处理。
5.6 地线通过一点相连,如可能,使用Bead;如抑制EMI需要,允许地线在其它地方相连。
5.7 所有地线走线尽量宽,25-50mil。
5.8 所有IC电源/地间的电容走线尽量短,并不要使用过孔。
6. 晶振电路
6.1 所有连到晶振输入/输出端(如XTLI、XTLO)的走线尽量短,以减少噪声干扰及分布电容对Crystal的影响。XTLO走线尽量短,且弯转角度不小於45度。(因XTLO连接至上升时间快,大电流之驱动器)
6.2 双面板中没有地线层,晶振电容地线应使用尽量宽的短线连接至器件上离晶振最近的DGND引脚,且尽量减少过孔。
6.3 如可能,晶振外壳接地。
6.4 在XTLO引脚与晶振/电容节点处接一个100 Ohm电阻。
6.5 晶振电容的地直接连接至 Modem的GND引脚,不要使用地线区域或地线走线来连接电容和Modem的GND引脚。
7. 使用EIA/TIA-232接口的独立Modem设计
7.1 使用金属外壳。 如果须用塑料外壳,应在内部贴金属箔片或喷导电物质以减小EMI。
7.2 各电源线上放置相同模式的Choke。
7.3 元器件放置在一起并紧靠EIA/TIA-232接口的Connector。
7.4 所有EIA/TIA-232器件从电源源点单独连接电源/地。电源/地的源点应为板上电源输入端或调压芯片的输出端。
7.5 EIA/TIA-232电缆信号地接至数字地。
针对模拟信号,再作一些详细说明:
模拟电路的设计是工程师们最头疼、但也是最致命的设计部分,尽管目前数字电路、大规模集成电路的发展非常迅猛,但是模拟电路的设计仍是不可避免的,有时也是数字电路无法取代的,例如 RF 射频电路的设计!这里将模拟电路设计中应该注意的问题总结如下,有些纯属经验之谈,还望大家多多补充、多多批评指正!...
(1)为了获得具有良好稳定性的反馈电路,通常要求在反馈环外面使用一个小电阻或扼流圈给容性负载提供一个缓冲。
(2)积分反馈电路通常需要一个小电阻(约 560 欧)与每个大于 10pF 的积分电容串联。
(3)在反馈环外不要使用主动电路进行滤波或控制 EMC 的 RF 带宽,而只能使用被动元件(最好为 RC 电路)。仅仅在运放的开环增益比闭环增益大的频率下,积分反馈方法才有效。在更高的频率下,积分电路不能控制频率响应。
(4)为了获得一个稳定的线性电路,所有连接必须使用被动滤波器或其他抑制方法(如光电隔离)进行保护。
(5)使用 EMC 滤波器,并且与 IC 相关的滤波器都应该和本地的 0V 参考平面连接。
(6)在外部电缆的连接处应该放置输入输出滤波器,任何在没有屏蔽系统内部的导线连接处都需要滤波,因为存在天线效应。另外,在具有数字信号处理或开关模式的变换器的屏蔽系统内部的导线连接处也需要滤波。
(7)在模拟 IC 的电源和地参考引脚需要高质量的 RF 去耦,这一点与数字 IC 一样。但是模拟 IC 通常需要低频的电源去耦,因为模拟元件的电源噪声抑制比(PSRR)在高于 1KHz 后增加很少。在每个运放、比较器和数据转换器的模拟电源走线上都应该使用 RC 或 LC 滤波。电源滤波器的拐角频率应该对器件的 PSRR 拐角频率和斜率进行补偿,从而在整个工作频率范围内获得所期望的 PSRR 。
(8)对于高速模拟信号,根据其连接长度和通信的最高频率,传输线技术是必需的。即使是低频信号,使用传输线技术也可以改善其抗干扰性,但是没有正确匹配的传输线将会产生天线效应。
(9)避免使用高阻抗的输入或输出,它们对于电场是非常敏感的。
(10)由于大部分的辐射是由共模电压和电流产生的,并且因为大部分环境的电磁干扰都是共模问题产生的,因此在模拟电路中使用平衡的发送和接收(差分模式)技术将具有很好的 EMC 效果,而且可以减少串扰。平衡电路(差分电路)驱动不会使用 0V 参考系统作为返回电流回路,因此可以避免大的电流环路,从而减少 RF 辐射。
(11)比较器必须具有滞后(正反馈),以防止因为噪声和干扰而产生的错误的输出变换,也可以防止在断路点产生振荡。不要使用比需要速度更快的比较器(将 dV/dt 保持在满足要求的范围内,尽可能低)。
(12)有些模拟 IC 本身对射频场特别敏感,因此常常需要使用一个安装在 PCB 上,并且与 PCB 的地平面相连接的小金属屏蔽盒,对这样的模拟元件进行屏蔽。注意,要保证其散热条件。
电解电容一般都是有极性的,用在直流电路中,一般电容外皮有标示正负极,还有就是引脚一长一短的,短的是负极,长的是正极。
极性电容:铝电解电容、钽电解电容,一般电容本体会有比较明确的正负标识,正负不能反接,不可用于交流电,否则电容可能发热爆裂。特点容值大,价格便宜。
无极性:薄膜电容(聚丙烯、聚酯等等)、瓷片电容常用,高频性能好,可以用在直流电和交流电上,不用在意正负,方向无所谓。
1.连线精简原则:
连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。
2.安全载流原则:
铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。
3.电磁抗干扰原则:
电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。
扩展资料:
布线作为PCB设计过程的重中之重,这将直接影响PCB板的性能好坏,设计过程也最繁琐,要求更高。虽然现在很多高级的EDA工具提供了自动布线功能,而且也相当智能化,但是自动布线并不能保证100%的布通率。
因此,很多工程师对自动布线的结果并不满意,手工布线现在还是大部分工程师的选择,通过进行电器规则约束布线,以达到信号完整性的要求。
PCB的层数可以分为单层,双层和多层的,单层现在基本淘汰了。双层板现在音响系统中用的挺多,一般是作为功放粗狂型的板子,多层板就是指4层及4层以上的板,对于元器件的密度要求不高的一般来讲4层就足够了。
从过孔的角度可以分成通孔,盲孔,和埋孔。通孔就是一个孔是从顶层直接通到底层的盲孔是从顶层或底层的孔穿到中间层,然后就不继续穿了,这个好处就是这个过孔的位置不是从头堵到尾的,其他层在这个过孔的位置上还是可以走线的埋孔就是这个过孔是中间层到中间层的,被埋起来的,表面是完全看不到。
参考资料:百度百科——PCB
1、按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开
2、定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件
3、卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路
4、元器件的外侧距板边的距离为5mm
5、贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm
6、金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm
7、发热元件不能紧邻导线和热敏元件高热器件要均衡分布
8、电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔
规划走线时,需注意以下几点
1、输入端与输出端的边线应避免相邻平行, 以免产生反射干扰。必要时应加地线隔离;两相邻层的布线要互相垂直,平行容易产生寄生耦合。
2、地线>电源线>信号线,通常信号线宽为:8mil~12mil;电源线为50mil~100mil。对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)
3、可以用一些孤岛铜,然后将其连接到地平面上。
4、在PCB板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。
5、实在没地方布线,可考虑布在VCC层,其次考虑GND层。
6、标准元器件两腿之间的距离为100mil(2.54mm),所以网格系统的基础一般就定为100mil(2.54 mm)或小于100mil的整倍数,如:50mil、25mil、20mil等。
一般布局时选择50mil网格,布线选择5mil网格,孔距和器件距离设为25mil(让器件之间可以走线)
7、板边的铺铜要距离板边20mil。
8、PCB 板上延时为 0.167ns/inch.。但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。
9、线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。
10、PCB板上的走线可等效为串联和并联的电容、电阻和电感结构。串联电阻的典型值0.25-0.55 ohms/英尺。并联电阻阻值通常很高。
11、如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7英寸。工作频率在50MHz布线长度应不大于1.5英寸。如果工作频率达到或超过75MHz布线长度应在1英寸。
12、任何高速和高功耗的器件应尽量放置在一起以减少电源电压瞬时过冲。
扩展资料:
PCB布线的常见规则
1、连线精简原则:
连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。
2、安全载流原则:
铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。
3、电磁抗干扰原则:
电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。
参考资料:百度百科-PCB
PCB中电源为+24V、+5V,那么布线的时候线宽最好在40mil以上,不过,在条件允许的情况下尽量宽;电源的地线要宽于V+的线宽,并尽量包围着V+以减少干扰,降低电源纹波;换算成mm可简单记为电源正不低于0.6mm,电源负要大于电源。
另外,布线宽度还要考虑到实际电流,根据实际电流选取合适线宽,一般10mil可承受的最大电流为1A。
扩展资料:
PCB电源线技巧:
1、旁路瓷片电容器的电容不能太大,而它的寄生串联电感应尽量小,多个电容并联能改善电容的阻抗特性
2、电感的寄生并联电容应尽量小,电感引脚焊盘之间的距离越远越好
3、避免在地层上放置任何功率或信号走线
4、高频环路的面积应尽可能减小
5、过孔放置不应破坏高频电流在地层上的路径
6、系统板上一小同电路需要不同接地层,小同电路的接地层通过单点与电源接地层相连接
7、控制芯片至上端和下端场效应管的驱动电路环路要尽量短
8、开关电源功率电路和控制信号电路元器件需要连接到小同的接地层,这二个地层一般都是通过单点相连接。
要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量
好、造价低的PCB.应遵循以下一般原则:
1.布局
首先,要考虑PCB 尺寸大小。PCB 尺寸过大时,印制线条长,阻抗增加,抗噪声能力
下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB 尺寸后.再确
定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。
在确定特殊元件的位置时要遵守以下原则:
(1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干
扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。
(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引
出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。
(3)重量超过15g 的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量
多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏
元件应远离发热元件。
(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机
的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置
要与调节旋钮在机箱面板上的位置相适应。
(5)应留出印制扳定位孔及固定支架所占用的位置。
根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则:
(1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽
可能保持一致的方向。
(2)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧
凑地排列在PCB 上.尽量减少和缩短各元器件之间的引线和连接。
(3)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件
平行排列。这样,不但美观.而且装焊容易.易于批量生产。
(4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩
形。长宽比为3:2 成4:3。电路板面尺寸大于200x150mm 时.应考虑电路板所受的机械
强度。
2.布线
布线的原则如下;
(1) 输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。
(2) 印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决
定。当铜箔厚度为0.05mm、宽度为1~15mm 时.通过2A 的电流,温度不会高于3℃,因
此导线宽度为1.5mm 可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm
导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距
主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只
要工艺允许,可使间距小至5~8mm。
(3) 印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此
外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生铜箔膨胀和脱落现象。必须
用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气
体。
3.焊盘
焊盘中心孔要比器件引线直径稍大一些。焊盘太大易形成虚焊。焊盘外径D 一般不小
于(d+1.2)mm,其中d 为引线孔径。对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。
PCB 及电路抗干扰措施
印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB 抗干扰设计的几
项常用措施做一些说明。
1.电源线设计
根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源
线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。
2.地段设计
地线设计的原则是:
(1)数字地与模拟地分开。若线路板上既有逻辑电路又有线性电路,应使它们尽量分
开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接
地。高频电路宜采用多点串联接地,地线应短而租,高频元件周围尽量用栅格状大面积地
箔。
(2)接地线应尽量加粗。若接地线用很纫的线条,则接地电位随电流的变化而变化,使
抗噪性能降低。因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。如有可
能,接地线应在2~3mm 以上。
(3)接地线构成闭环路。只由数字电路组成的印制板,其接地电路布成团环路大多能提
高抗噪声能力。
3.退藕电容配置
PCB 设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。退藕电容
的一般配置原则是:
(1)电源输入端跨接10~100uf 的电解电容器。如有可能,接100uF 以上的更好。
(2)原则上每个集成电路芯片都应布置一个0.01pF 的瓷片电容,如遇印制板空隙不够,
可每4~8 个芯片布置一个1~10pF 的但电容。
(3)对于抗噪能力弱、关断时电源变化大的器件,如RAM、ROM 存储器件,应在芯片
的电源线和地线之间直接接入退藕电容。
(4)电容引线不能太长,尤其是高频旁路电容不能有引线。此外,还应注意以下两点:
(1) 在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火
花放电,必须采用附图所示的RC 电路来吸收放电电流。一般R 取1~2K,C 取.2~47UF。
(2) CMOS 的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正
电源。