电阻303 代表多少阻值
电阻303是30K=30000欧姆,58K=58000欧姆。如何识别色环电阻;
熟记第一、二环每种颜色所代表的数。可这样记忆:棕1,红2,橙3,黄4,绿5,蓝6,紫7,灰8,白9,黑0,金5%;银色为10%。这样连起来读,多复诵几遍便可记住。
记准记牢第三环颜色所代表的 阻值范围,这一点是快识的关键。具体是:
金色:几点几 Ω
黑色:几十几 Ω
棕色:几百几十 Ω
红色:几点几 kΩ
橙色:几十几 kΩ
黄色:几百几十 kΩ
绿色:几点几 MΩ
蓝色:几十几 MΩ
从
来看,在体上可把它们划分为三个大的等级,即:金、黑、棕色是欧姆级的;红橙\'、黄色是千欧级的;绿、蓝色则是兆欧级的。这样划分一下是为了便于记忆。
(3)当第二环是黑色时,第三环颜色所代表的则是整数,即几,几十,几百 kΩ等,这是读数时的特殊情况,要注意。例如第三环是红色,则其阻值即是整几kΩ的。
(4)记住第四环颜色所代表的误差,即:金色为5%;银色为10%;无色为20%。
下面举例说明:
例1当四个色环依次是黄、橙、红、金色时,因第三环为红色、阻值范围是几点几kΩ的,按照黄、橙两色分别代表的数"4"和"3"代入,,则其读数为4.3kΩ。第环是金色表示误差为5%。
例2当四个色环依次是棕、黑、橙、金色时,因第三环为橙色,第二环又是黑色,阻值应是整几十kΩ的,按棕色代表的数"1"代入,读数为10 kΩ。第四环是金色,其误差为5%
在某些不好区分的情况下,也可以对比两个起始端的色彩,因为计算的起始部分即第1色彩不会是金、银、黑3种颜色。如果靠近边缘的是这3种色彩,则需要倒过来计算。
色彩标识有两种方式,一种是采用4色环的标注方式,令一种采用5色环的标注方式。两者的区别在于:4色环的用前两位表示电阻的乘数,第三环而5色环用前三位表示该电阻的有效数字,两者的倒数第4位表示了电阻的乘数,最后一位表示了该电阻的误差。
对于4色环,其阻值计算方法位:阻值=(第1色环数值*10+第2色环数值)*第3位色环代表之所乘数,第四环是误差。
对于5色环电阻,其阻值计算方法:阻值=(第1色环数值*100+第2色环数值*10+第3位色环数值)*第4位色环代表之所乘数,第五环为误差。
★ 561=560pf,30=30pf
表示方法:
瓷片电容: 多数在1μF以下,
①直接用数字表示。如: 10、22、0.047、0.1 等等, 这里要注意的是单位。凡用整数表示的, 单位默认pF; 凡用小数表示的,单位默认μF。如以上例子中, 分别是10P、22P、0.047μF、220μF 等。
②现在国际上流行另一种类似色环电阻的表示方法( 单位默认pF) :
前两个数字表示有效读数,第三个数字表示后面追加的“0”的个数。
如: “ 473”(即47加三个0)=47000pF=0.047μF ,
“ 103”即(10+000)pF=10000PF=0.01μF等等, 这种表示法已经相当普遍。
331为330pF=0.33nF=0.00033μF
68为68pF
682为6800pF=6.8nF=0.0068μF
5为5pF
附:小瓷片、涤纶电容的标识含义(给你学习)
1F(法)=1000000 μF(微法),即106μF(微法)
1μF(微法)=1000 nF (纳法),即103nF(纳法)=1000,000 pF (皮法)
1nF (纳法) =1000 pF (皮法) ,即103pF(皮法)
104表示为:10,0000 pF(皮法)=100 nF (纳法)=0.1μF(微法);
223表示为:22,000 pF(皮法)=22 nF (纳法)=0.022μF(微法);
684表示为:68,0000 pF(皮法)=680 nF (纳法) =0.68μF(微法);
105表示为:10,00000 pF(皮法)=1000 nF (纳法)=1μF(微法)。
1、电容耐压、误差标识意义
I类、II类电容的耐压代号:
A::1.0V G: 4.0V B::1.25V W::4.5V C::1.6V H::5.0V D: 2.0V
J::6.3V E::2.5V K::8.0V F::3.15V Z::9.0V
以上字母前面的数字表示10的多少次幂,如2A就表示耐压为1.0×10^2=100V; 2J就表示耐压为6.3×10^2=630V。
2、电容器精度等级表示方法
常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:
D——0.05级——±0.5%;
F——0.1级——±1%;
G——0.2级——±2%;
J—— I 级——±5%;
K—— II 级——±10%;
M—— III 级——±20%。
瓷片电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。
电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(μF)/mju:/、纳法(nF)、皮法(pF)。其中:1法拉=1000毫法(mF),1毫法=1000微法(μF),1微法=1000纳法(nF),1纳法=1000皮法(pF)
1、容量大的电容其容量值在电容上直接标明,如10μF/16V;
2、容量小的电容其容量值在电容上用字母表示或数字表示;
字母表示法:
1m=1000μF
1P=1pF(如470P=470pF)
1P2=1.2PF
1n=1000PF;
数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数字,第三位数字表示有效数字后面零的个数,它们的单位都是pF。
如:
102表示标称容量为10×10²pF=1000pF;
104表示标称容量为10×(10^4)pF=100000pF;
470表示标称容量为47pF;
223表示标称容量为(22×(10^3))pF(即22000pF)。
在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数字乘上10的-1次方来表示容量大小。
如:229表示标称容量为22x10^(-1)pF=2.2pF。
1960年左右陶瓷叠片电容作为商品开始开发
1970年,随着混合IC、计算机、以及便携电子设备的进步也随之迅速的发展起来,瓷片电容成为电子设备中不可缺少的零部件,而其中技术参数也是学者们研究的重点
现在的陶瓷介质电容的全部数量约占电容市场的70%左右
因为陶瓷介质电容的绝缘体材料主要使用陶瓷,其基本构造是将陶瓷和内部电极交相重叠
陶瓷材料有几个种类
自从考虑电子产品无害化特别是无铅化后,高介电系数的PB(铅)退出瓷片电容技术参数领域,现在主要使用TiO2(二氧化钛)、BaTiO3,CaZrO3(锆酸钙)等
和其它的电容相比具有体积小、容量大、耐热性好、适合批量生产、价格低等优点
由于原材料丰富,结构简单,价格低廉,而且电容量范围较宽(一般有几个PF到上百μF),损耗较小,电容量温度系数可根据要求在很大范围内调整
瓷片电容技术参数品种繁多,外形尺寸相差甚大从0402(约1×0.5mm)封装的贴片电容到大型的功率瓷片电容
按使用的介质材料特性可分为Ⅰ型、Ⅱ型和半导体瓷片电容;按无功功率大小可分为低功率、高功率瓷片电容;按工作电压可分为低压和高压瓷片电容;按结构形状可分为圆片形、管型、鼓形、瓶形、筒形、板形、叠片、独石、块状、支柱式、穿心式等
瓷片电容的分类:瓷片电容技术参数从介质类型主要可以分为两类,即Ⅰ类瓷片电容技术参数和Ⅱ类瓷片电容技术参数
Ⅰ类瓷片电容技术参数(ClassⅠceramiccapacitor),过去称高频瓷片电容技术参数(High-freqencyceramiccapacitor),是指用介质损耗小、绝缘电阻高、介电常数随温度呈线性变化的陶瓷介质制造的电容
它特别适用于谐振回路,以及其它要求损耗小和电容量稳定的电路,或用于温度补偿
Ⅱ类瓷片电容技术参数(ClassⅡceramiccapacitor)过去称为为低频瓷片电容技术参数(Lowfrequencycermiccapacitor),指用铁电陶瓷作介质的电容,因此也称铁电瓷片电容技术参数
这类电容的比电容大,电容量随温度呈非线性变化,损耗较大,常在电子设备中用于旁路、耦合或用于其它对损耗和电容量稳定性要求不高的电路中
常见的Ⅱ类瓷片电容技术参数有:X7R、X5R、Y5V、Z5U其中:X7R表示为:第一位X为最低工作温度-55℃,第二位的数字7位最高工作温度+125℃,第三位字母R为随温度变化的容值偏差±15%;X5R表示为:第一位X为最低工作温度-55℃,第二位的数字5位最高工作温度+85℃,第三位字母R为随温度变化的容值偏差±15%;Y5V表示为:第一位Y为最低工作温度-30℃,第二位的数字5位最高工作温度+85℃,第三位字母V为随温度变化的容值偏差+22%,-82%±15%
Z5U表示为:第一位Z为最低工作温度+10℃,第二位的数字5位最高工作温度+85℃,第三位字母U为随温度变化的容值偏差+22%,-56%
在回路以及旁路电容器中瓷片电容都是必不可少的,瓷片电容都是由陶瓷材料烧制而成的
虽然材质都是一样的,但在不同电路中所运用的瓷片电容规格也是不一样的
规格一:1000V-6000V高频瓷片电容高频瓷片电容一般主要都是运用于较高稳定振荡的回路中,因此其在稳定性方面要求是比较高的,如比较常见的耦合电容以及高压旁路就会选择用高频瓷片电容
最主要的优点就是可以耐受高温以及耐磨性比较强,如日常生活中常见的电视接收机上就会使用高压瓷片电容
规格二:50V以下低频瓷片电容低频瓷片电容主要是运用在一些工作频率比较低的回路中,在这类型的回路中往往对于电容的稳定性以及损耗的程度要求都不是很高
尤其是在一些脉冲比较强的电路中是不能使用低频瓷片电容的,否则很有可能会被电压直接击穿
二者的差异比较二者不同类型的瓷片电容规格识别可以直接通过电容器或者是电路来进行判断
一般来说可以耐受高压,绝缘性比较好,而且比较可靠,运用于高压电路中的就属于高频瓷片电容
而低频瓷片电容相比较而言可靠性以及成本都比较低,多数时候都是运用于一些低频电路以及耦合电路等的电容器中
快速识别方法一般来说在音频控制器以及分频器上使用的电容都是高频瓷片电容,因为其容量会比较大,通过金属塑料薄膜的使用可以获得更佳的音质
其次就是在滤波电容中,其容量的特性决定了使用电解电容的效果会比较好,但在使用的过程中还要注意抑制高频阻抗不断上升的情况
所以针对瓷片电容规格的识别来说,可以通过判断回路的电压以及特性就可以快速鉴别出其所使用的瓷片电容,同时在进行识别的时候也可以参照电阻的规格识别方法