建材秒知道
登录
建材号 > 瓷片 > 正文

贴片电容详细资料大全

活力的柠檬
潇洒的果汁
2023-03-27 04:19:21

贴片电容详细资料大全

最佳答案
鳗鱼背包
忧虑的枫叶
2025-09-20 03:48:18

贴片电容是一种电容材质。贴片电容全称为:多层(积层,叠层)片式陶瓷电容器,也称为贴片电容,片容。贴片电容有两种表示方法,一种是英寸单位来表示,一种是毫米单位来表示。

基本介绍中文名 :贴片电容 外文名 :Multiplayer Ceramic Chip Capacitors 缩写 :MLCC 尺寸,命名,封装,贴片电容的分类,NPO电容器,X7R电容器,Z5U电容器,Y5V电容器,MLCC电容选型,电容的作用,内部结构, 尺寸 贴片电容有两种尺寸表示方法,一种是以英寸为单位来表示,一种是以毫米为单位来表示,贴片电容的系列型号有0402、0603、0805、1206、1210、1808、1812、2010、2225、2512,这些是英寸表示法, 04 表示长度是0.04 英寸,02 表示宽度0.02 英寸,其他类同型号尺寸(mm) 英制尺寸 公制尺寸 长度及公差 宽度及公差 厚度及公差 0402 1005 1.00±0.05 0.50±0.05 0.50±0.05 0603 1608 1.60±0.10 0.80±0.10 0.80±0.10 0805 2012 2.00±0.20 1.25±0.20 0.70±0.20 1.00±0.20 1.25±0.20 1206 3216 3.00±0.30 1.60±0.20 0.70±0.20 1.00±0.20 1.25±0.20 1210 3225 3.00±0.30 2.54±0.30 1.25±0.30 1.50±0.30 1808 4520 4.50±0.40 2.00±0.20 ≤2.00 1812 4532 4.50±0.40 3.20±0.30 ≤2.50 2220 57505.70±0.40 5.00±0.30 ≤2.50 2225 5763 5.70±0.50 6.30±0.50 ≤2.50 3035 7690 7.60±0.50 9.00±0.05 ≤3.00 命名 贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。 贴片电容的命名: 0805CG102J500NT 0805:是指该贴片电容的尺寸大小,是用英寸来表示的08 表示长度是0.08 英寸、05 表示宽度为 0.05 英寸 CG :是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF以下的电容,102 :是指电容容量,前面两位是有效数字、后面的2 表示有多少个零102=10×100 也就是= 1000PF J:是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的 500:是要求电容承受的耐压为50V 同样500 前面两位是有效数字,后面是指有多少个零。 N:是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡 T:是指包装方式,T 表示编带包装, 贴片电容的颜色,常规见得多的就是比纸板箱浅一点的黄,和青灰色,这在具体的生产过程中会有产生不同差异 贴片电容上面没有印字,这是和他的制作工艺有关(贴片电容是经过高温烧结面成,所以没办法在它的表面印字),而贴片电阻是丝印而成(可以印刷标记)。 贴片电容有中高压贴片电容和普通贴片电容,系列电压有6.3V、10V、16V、25V、50V、100V、200V、500V、1000V、2000V、3000V、 4000V 贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容系列的型号有0201、0402、0603、0805、1206、1210、1812、2010、2225 等。 贴片电容的材料常规分为三种,NPO,X7R,Y5V NPO 此种材质电性能最稳定,几乎不随温度,电压和时间的变化而变化,适用于低损耗,稳定性要求要的高频电路。 容量精度在5%左右,但选用这种材质只能做容量较小的,常规100PF 以下,100PF- 1000PF 也能生产但价格较高 X7R 此种材质比NPO 稳定性差,但容量做的比NPO 的材料要高,容量精度在10%左右。 Y5V 此类介质的电容,其稳定性较差,容量偏差在20%左右,对温度电压较敏感,但这种材质能做到很高的容量,而且价格较低,适用于温度变化不大的电路中。 封装 贴片电容:可分为无极性和有极性两类,无极性电容下述两类封装最为常见,即0805、0603;而有极性电容也就是我们平时所称的电解电容,一般我们平时用的最多的为铝电解电容,由于其电解质为铝,所以其温度稳定性以及精度都不是很高,而贴片元件由于其紧贴电路版,所以要求温度稳定性要高,所以贴片电容以钽电容为多,根据其耐压不同,贴片电容又可分为A、B、C、D 四个系列, 具体分类如下:类型封装形式耐压 A 3216 10V B 3528 16V C 6032 25V D 7343 35V 贴片电容的分类 一 NPO电容器 二 X7R电容器 三 Z5U电容器 四 Y5V电容器 区别:NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。 NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。 NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到 125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 封 装 DC=50V DC=100V 0805 0.5---1000pF 0.5---820pF 1206 0.5---1200pF 0.5---1800pF 1210 560---5600pF 560---2700pF 2225 1000pF---0.033μF 1000pF---0.018μF NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。 X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到 125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要套用于要求不高的工业套用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。 封 装 DC=50V DC=100V 0805 330pF---0.056μF 330pF---0.012μF 1206 1000pF---0.15μF 1000pF---0.047μF 1210 1000pF---0.22μF 1000pF---0.1μF 2225 0.01μF---1μF 0.01μF---0.56μF Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。 尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率回响,使其具有广泛的套用范围。尤其是在退耦电路的套用中。下表给出了Z5U电容器的取值范围。 封 装 DC=25V DC=50V 0805 0.01μF---0.12μF 0.01μF---0.1μF 1206 0.01μF---0.33μF 0.01μF---0.27μF 1210 0.01μF---0.68μF 0.01μF---0.47μF 2225 0.01μF---1μF 0.01μF---1μF Z5U电容器的其他技术指标如下: 工作温度范围10℃ --- 85℃ 温度特性 22% ---- -56% 介质损耗 最大 4% Y5V电容器 Y5V电容器是一种有一定温度限制的通用电容器,在-30℃到85℃范围内其容量变化可达 22%到-82%。 Y5V的高介电常数允许在较小的物理尺寸下制造出高达4.7μF电容器。 Y5V电容器的取值范围如下表所示 封 装 DC=25V DC=50V 0805 0.01μF---0.39μF 0.01μF---0.1μF 1206 0.01μF---1μF 0.01μF---0.33μF 1210 0.1μF---1.5μF 0.01μF---0.47μF 2225 0.68μF---2.2μF 0.68μF---1.5μF Y5V电容器的其他技术指标如下: 工作温度范围 -30℃ --- 85℃ 温度特性 22% ---- -82% 介质损耗 最大 5% 贴片电容器命名方法可到AVX网站上找到。不同的公司命名方法可能略有不同。 MLCC电容选型 主要MLCC主要生产厂家:日本京瓷、村田、丸和、TDK;韩国三星;台湾达方、平尚电子科技、禾伸堂、国巨、华新科;大陆有名的则是宇阳、风华高科、三环。 容选形时需要考虑的因素很多,以下探讨了MLCC的 电容 选形要素。 选型要素 -参数:电容值、容差、耐压、使用温度、尺寸 -材质 -直流偏置效应 介质的性能 -C0G电容器具有高温度补偿特性,适合作旁路电容和耦合电容 -X7R电容器是温度稳定型陶瓷电容器,适合要求不高的工业套用 -Z5U电容器特点是小尺寸和低成本,尤其适合套用于去耦电路 -Y5V电容器温度特性最差,但容量大,可取代低容铝电解电容 MLCC常用的有C0G(NP0)、X7R、Z5U、Y5V等不同的介质规格,不同的规格有不同的特点和用途。C0G、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同,所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 电容的作用 1)旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。 就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。 这能够很好地防止输入值过大而导致的地电位抬高和噪声。地电位是地连线处在通过大电流毛刺时的电压降。 2)去耦 去耦,又称解耦。 从电路来说, 总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大, 驱动电路要把电容充电、放电, 才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大, 这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是晶片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。 去耦电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。 将旁路电容和去耦电容结合起来将更容易理解。旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般取0.1μF、0.01μF 等;而去耦合电容的容量一般较大,可能是10μF 或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。 3)滤波 从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1μF 的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过。具体用在滤波中,大电容(1000μF)滤低频,小电容(20pF)滤高频。曾有网友形象地将滤波电容比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。 4)储能 储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150 000μF 之间的铝电解电容器(如EPCOS 公司的B43504 或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW 的电源,通常采用体积较大的罐形螺旋端子电容器。 内部结构 它的外表是陶瓷做的,但不止只有一种,它还分玻璃电容、油纸电容、电解电容等。 通常所说的陶瓷贴片电容是指MLCC,即多层陶瓷片式电容(Multilayer Ceramic Capacitors)。 常规贴片电容按材料分为COG(NPO),X7R,Y5V,其引脚封装有0201,0402,0603.0805.1206,1210,1812,1825,2225. 多层陶瓷电容(MLCC)是由平行的陶瓷材料和电极材料层叠而成。

最新回答
着急的大炮
彩色的茉莉
2025-09-20 03:48:18

巨型计算机是一种超大型电子计算机。具有很强的计算和处理数据的能力,主要特点表现为高速度和大容量,配有多种外部和外围设备及丰富的、高功能的软件系统。

巨型计算机实际上是一个巨大的计算机系统,主要用来承担重大的科学研究、国防尖端技术和国民经济领域的大型计算课题及数据处理任务。如大范围天气预报,整理卫星照片,原子核物的探索,研究洲际导弹、宇宙飞船等,制定国民经济的发展计划,项目繁多,时间性强,要综合考虑各种各样的因素,依靠巨型计算机能较顺利地完成。

对巨型计算机的指标一些家这样规定:首先,计算机的运算速度平均每秒1000万次以上;其次,存贮容量在1000万位以上。如我国研制成功的"银河"计算机,就属于巨型计算机。巨型计算机的发展是电子计算机的一个重要发展方向。它的研制水平标志着一个国家的科学技术和工业发展的程度,体现着国家经济发展的实力。一些发达国家正在投入大量资金和人力、物力,研制运算速度达几百亿次的超级大型计算机。

在一定时期内速度最快、性能最高、体积最大、耗资最多的计算机系统。巨型计算机是一个相对的概念,一个时期内的巨型机到下一时期可能成为一般的计算机;一个时期内的巨型机技术到下一时期可能成为一般的计算机技术。现代的巨型计算机用于核物理研究、核武器设计、航天航空飞行器设计、国民经济的预测和决策、能源开发、中长期天气预报、卫星图像处理、情报分析和各种科学研究方面,是强有力的模拟和计算工具,对国民经济和国防建设具有特别重要的价值。

据统计,计算机的性能与使用价值的平方成正比,即所谓平方律。按照这一统计规律,计算机性能越高,相对价格越便宜。因此,随着大型科学工程对计算机性能要求的日益提高,超高性能的巨型计算机将获得越来越大的经济效益。

一、巨型计算机的发展概况

50年代中期的巨型机有 UNIVAC公司的LARC机和 IBM公司的 STretch机。这两台计算机分别采用了指令先行控制、多个运算单元、存储交叉访问、多道程序和分时系统等并行处理技术。60年代的巨型机有CDC6600机和7600机,它们都配置有多台外围处理机,主机的中央处理器含有多个独立并行的处理单元。70年代出现了现代巨型计算机,其指令执行速度每秒已达5000万次以上,或每秒可获得2000万个以上的浮点结果。

现代巨型机经历了三个发展阶段。第一阶段有美国ILLIAC-Ⅳ(1973年)、STAR-100(1974年)和ASC(1972年)等巨型机。ILLIAC-Ⅳ机是一台采用64个处理单元在统一控制下进行处理的阵列机,后两台都是采用向量流水处理的 向量计算机 。1976年研制成功的CRAY-1机标志着现代巨型机进入第二阶段。这台计算机设有向量、标量、地址等通用寄存器,有12个运算流水部件,指令控制和数据存取也都流水线化;机器主频达80兆赫,每秒可获得8000万个浮点结果; 主存储器 容量为100~400万字(每字64位),外存储器容量达10 9 ~10 11 字;主机柜呈圆柱形,功耗达数百千瓦;采用氟里昂冷却。图中为这种机器的逻辑结构。中国的“银河“亿次级巨型计算机(1983年)也是多通用寄存器、全流水线化的巨型机。运算流水部件有18个,采用双向量阵列结构,主存储器容量为200~400万字(每字64位),并配有磁盘海量存储器。这些巨型机的系统结构都属于单指令流多数据流(SIMD)结构。80年代以来,采用多处理机(多指令流多数据流MIMD)结构、多向量阵列结构等技术的第三阶段的更高性能巨型机相继问世。例如,美国的CRAY-XMP、CDCCYBER205,日本的S810/10和20、VP/100和200、S×1和S×2等巨型机,均采用超高速门阵列芯片烧结到多层陶瓷片上的微组装工艺,主频高达50~160兆赫以上,最高速度有的可达每秒5~10亿个浮点结果,主存储器容量为400~3200万字(每字64位),外存储器容量达10 12 字以上。

还有一类专用性很强的巨型机。例如,美国哥德伊尔宇航公司的巨型并行处理机MPP,由16384个处理器组成128×128的方阵,专用于卫星图像信息的高速处理,8位整数加的处理速度可达每秒60亿次,32位浮点加可达每秒1.6亿次。英国ICL公司研制的分布式阵列处理机专用系统DAP,由 4096个一位 微处理器 和一台大型系列机2900组成,最高速度可达每秒1亿个64位的浮点结果。

二、巨型计算机的组成

巨型机主机由高速运算部件和大容量快速主存贮器构成。由于巨型机加工数据的吞吐量很大,只有主存是不够的,一般有半导体快速扩充存贮器和海量(磁盘)存贮子系统来支持。对大规模数据处理系统的用户,常需大型联机磁带子系统或光盘子系统作为大量信息数据进/出的媒介 。巨型机主机一般不直接管理慢速的输入/输出(I/O)设备,而是通过I/O接口通道联结前端机,由前端机做I/O的工作,包括用户程序和数据的准备、运算结果的打印与绘图输出等。前端机一般用小型机。I/O的另一种途径是通过网络,网上的用户借助其端机(微机、工作站、小型大型机)通过网来使用巨型机,I/O均由用户端机来做。网络方式可大大提高巨型机的利用率。

三、巨型机技术

并行处理是巨型机技术的基础。为提高系统性能,现代巨型机都在系统结构、硬件、软件、工艺和电路等方面采取各种支持并行处理的技术。

数据类型为便于高速并行处理, 中央处理器 的数据类型除传统的各类标量外,都增加了向量或数组类型。向量或数组运算的实质,是相继或同时执行一批同样的运算,而标量运算只处理一个或一对操作数,故向量运算速度一般比标量运算速度快得多。

硬件结构现代巨型机硬件大多采用流水线、多功能部件、阵列结构或多处理机等各种技术。流水线是把整个部件分成若干段,使众多数据能重叠地在各段操作,特别适于向量运算,性能-价格比高,应用普遍。多功能部件可以同时进行不同的运算,每个部件内部又常采用流水线技术,既适合向量运算又适合标量运算。中国的“银河”机和日本的 VP/200、S810/20机进一步将每个向量流水部件或向量处理机加倍,组成双向量阵列,又把向量运算速度提高了两倍。美国CYBER-205机的向量处理机可按用户需要组成一、二或四条阵列式的流水线,技术上又有所发展。多处理机系统以多台处理机并行工作来提高系统的处理能力,各台处理机可以协作完成一个作业,也可以独立完成各自的作业。每台处理机内部也可采用各种适宜的并行处理技术。在任务的划分与分配、多处理机之间的同步与通信和 互连网络 的效益等方面,多处理机系统尚存在不少问题有待解决。现代巨型机采用的主要还是双处理机系统(如CRAY-XMP)和四处理机系统(如HEP)。

向量寄存器为降低存储流量和频带宽度的要求,并解决短向量运算速度低的问题,第二阶段的巨型机采取了向量寄存器技术。CRAY-1机设有8个向量寄存器,所有向量运算指令都面向向量寄存器和其他通用寄存器。为更有力地支持各运算流水部件高度并行地进行各自的向量运算,日本的VP/100和S810等第三阶段的巨型机设有庞大的向量寄存器,总容量达64K字节。

标量运算标量运算速度对巨型机系统综合速度的影响极大。为此,除增设标量寄存器、标量后援寄存器或标量 高速缓冲存储器 以及采用先进的标量控制技术(如先行控制等)外,还可采用专作标量运算的功能部件和标量处理机等技术。例如,CRAY-1机的多功能部件中,有6个专作标量和地址运算,3个兼作标量浮点运算,标量运算速度可达每秒2000万次以上;CYBER205机专设标量处理机,含5个运算部件,标量运算速度可达每秒5000万次以上。在提高向量运算速度的同时,进一步提高标量运算速度,尽可能缩小两者的差距,已成为改善巨型机系统性能的重要研究课题。

主存储器为使复杂系统的三维处理成为可能,要求主存储器能容纳庞大的数据量。80年代的巨型机容量已达256兆字节。为与运算部件的速度相匹配,主存储器必须大大提高信息流量。为此,主要的措施是:①采取较成熟的多模块交叉访问技术,模块数量一般取2n,有的巨型机采用素数模新技术,以尽量避免向量访问的冲突;②不断减小每个模块的存取周期,如CRAY-XMP机的存取周期为38纳秒,S810机虽用静态MOS存储器,也只有40纳秒,与双极存储相当;③增加主存储器的访问端口,如CRAY-XMP机的每台处理机与CRAY-1机相比,访问端口由一个增加到四个,解决了存储访问的瓶颈问题。

输入输出通道巨型机不但配有数量较多的输入输出通道,如16~32个,而且具有较高的通道传输率。如CRAY-XMP机除一般通道外,还有两个传输率为每秒100兆字节的通道和一个传输率高达每秒1250兆字节的通道。

固态海量存储器为适应特大算题的大量数据在主存储器和外存储器之间的频繁调度,新型的巨型机采用固态海量存储器作为超高速外存储器。CRAY-XMP机的固态存储器采用MOS技术,容量为64~256兆字节,传输率比磁盘快50~100倍。S810机的固态存储器容量为256~1024兆字节,传输率达每秒1000兆字节。

大规模集成电路巨型机的 逻辑电路 都采用超高速ECL电路,门级延迟约为0.25~0.5纳秒,芯片门数为几十至一千以上;1984年日本已研制成功4K门阵列常温砷化镓芯片,级延迟约为50皮秒;用于向量寄存器的超高速双极随机存取存储器的访问时间为3.5~5.5纳秒。

组装工艺缩短机内走线长度和提高机器主频,是提高巨型机速度的基础。现代巨型机主频有的已达 250兆赫以上。为此,除提高芯片的集成度和速度外,还采用微组装等高密度多层组装工艺。由此而来的散热问题很突出,需要采取特殊的冷却措施。

并行算法和软件技术为充分发挥巨型机的系统性能,必须研究各种并行算法并研制并行化的软件系统。针对特大型科学计算的特点,巨型机通常配置如下软件:具有多重处理能力的批处理分布式 操作系统 、高效的汇编语言、向量FORTRAN或PASCAL、ADA语言和向量识别器、并行化标准子程序库、科学子程序库和应用程序库、系统 实用程序 、诊断程序等。

细心的老师
简单的棉花糖
2025-09-20 03:48:18
MLCC:当前产量最大、发展最快的片式元器件之一

片式多层陶瓷电容器(MLCC),由内电极、陶瓷层和端电极三部分组成,其介质材料与内电极以错位的方式堆叠,然后经过高温烧结烧制成形,再在芯片的两端封上金属层,得到了一个类似于独石的结构体,故MLCC也常被称为“独石电容器”。

图表:MLCC制作工艺繁杂,是材料学、低温共烧等技术的综合积累

资料来源:公开资料整理

MLCC小型化、大容量、高压化及高频化是大趋势

MLCC作为新兴电容器,诞生于1960s的美国,但当其流传到日本,才得到大规模的发展。近年,随着市场中电子整机不断地向小型化、大容量化、高可靠性和低成本的方向发展,MLCC轻薄短小系列的产品已经渐渐趋向于标准化和通用化,诸多领先厂商争先研发大容量MLCC,特别是容量在10μF~100μF这一段,具有较好的利润空间。一些电子整机、电子设备往大功率耐压方向的发展,也不断推动中高压MLCC的高耐压设计技术、高压可靠性试验技术及耐热设计技术的发展。电子移动通讯设备如手机、电脑等对片式电容器的高频特性亦有较高要求,推动其在高频化方面的发展。

图表:MLCC的小型化、大容量化、高压化及高频化是大趋势

资料来源:公开资料整理

材料技术及薄层技术发展使得MLCC尺寸逐渐变小,单位体积容量加大

资料来源:公开资料整理

MLCC产业链涵盖自上游陶瓷介电粉末、电极金属至下游消费电子、工业等诸多领域。产业的上游主要涵盖陶瓷粉末、电极金属等,其中陶瓷粉末因其制备难度大,绝大部分市场份额被日韩供应商占有,银、镍等电极金属则主要由国内厂商供应。多层陶瓷片式电容器的革命性改变就是将钯等昂贵的贵金属换为更稳定的镍等非贵金属。传统的MLCC一半采用Ag/Pd电极和Pd电极,这些金属具有耐高温共烧、电阻率低及熔点高等特点,适用于MLCC的生产。然而近年来贵金属价格不断攀升,而大容量化要求不断地提升高叠层的层数,随之而来的是内电极层数的增加,内电极成本成为制约MLCC进一步发展的重要因素。镍作为贱金属之一,不仅具有成本优势,其原子或原子团的电迁移速率较贵金属电极小,工艺稳定性高,且电阻率相对较低,阻抗频率特性好。MLCC产业的下游几乎涵盖了电子工业全领域,如消费电子、工业、通信、汽车及军工等。

MLCC产业链涵盖了自上游陶瓷介电粉末、电极金属到电子工业等诸多领域

资料来源:公开资料整理

MLCC是当前产量最大、发展最快的片式元器件之一。陶瓷电容器的应用电压和电容值范围较大,同时兼有工作稳定范围宽、介质损耗小、体积小及价格低等优点,被广泛应用于军事、消费电子等领域。据中国产业信息网2017年5月报道,陶瓷电容器在包括铝电解电容器、钽电解电容器及薄膜电容器在内的四类主要电容器中市场份额最高,达到约43%,是当前生产规模最大、发展最快的片式元器件之一。

MLCC应用电压和电容值范围较大

甜蜜的花卷
清爽的夏天
2025-09-20 03:48:18

你是问九牧的阀芯品牌还是问陶瓷阀芯本身是什么?

1.九牧用的是德国阀芯,把龙头拆开看一下,阀芯上有HENT标志。

2.陶瓷阀芯见以下图片,琢磨一下应该可以明白。