陶瓷棍棒主要用来干什么的?
陶瓷辊棒是一细长的陶瓷圆筒,在该陶瓷圆筒的筒壁上的两端各设有开孔,可以各是一个或各是两个。通过该开孔,结合金属片或陶瓷片,可以实现方便可靠的与轴承等配件结合,从而提高传动效率,还可以实现以齿轮传动的方式,使该陶瓷辊棒主动转动。避免陶瓷辊棒在皮带传动过程中的卡死、停转堵塞等情况的发生。陶瓷棍棒(氧化铝辊棒)是辊道窑中最关键的耐火材料,在窑炉中起承载和传送产品的作用。随着陶瓷生产的发展以及辊道窑在建筑卫生陶瓷、日用瓷及特种陶瓷中有着广泛的应用,对窑炉中所使用的耐火材料的要求在不断提高,特别是对辊棒的强度和高温力学性能提出了更新的要求。氧化铝陶瓷辊棒是国内、外陶瓷辊棒的发展趋势,因为它完全满足墙地砖生产的各种需求,具有其它陶瓷辊棒所不能及的优点。陶瓷辊棒简介:它应用于玻璃陶瓷工业中的辊道窑。陶瓷辊棒的主要作用是传输陶瓷或玻璃产品,耐高温高热,需要常清理辊棒表面。目前主要应用广泛的陶瓷辊棒有刚玉辊棒。高温辊棒的使用方法:①辊棒两端内腔要填塞长30-50mm的耐火纤维棉,塞入深度60-80mm长,但不要超过100mm.②辊棒表面保护涂层可以减少化学物质对辊棒的腐蚀作用,降低断辊事故的发生,所以辊棒入窑前表面要涂上保护涂层。上浆长度一般比窑内有效宽度长100mm为妥,厚度0.8mm-1.2mm之间,具体使用方法清参考辊棒保护涂料的介绍。
金属陶瓷是一种复合材料,它的定义在不同时期略有不同,如,有的定义为由陶瓷和金属组成的一种材料,或由粉末冶金方法制成的陶瓷与金属的复合材料。《辞海》定义为:由金属和陶瓷原料制成的材料,兼有金属和陶瓷的某些优点,如前者的韧性和抗弯性,后者的耐高温、高强度和抗氧化性能等。美国ASTM专业委员会定义为:一种由金属或合金与一种或多种陶瓷相组成的非均质的复合材料,其中后者约占15%~85%体积分数,同时在制备的温度下,金属和陶瓷相之问的溶解度相当小。从狭义的角度定义的金属陶瓷是指复合材料中金属和陶瓷相在三维空间上都存在界面的一类材料。
它是两相金属的机械混合物,每相金属各相保留原有的物理性能。两相金属中一相为难熔相,它的硬度高、熔点高,在高温和冲击作用下不变形,在电弧作用下不熔化,因此这相金属在材料中起骨架作用。这类金属有钨、钼、金属氧化物等。另一相金属为载流相,它主要起导电和导热作用。这类金属银、铜等。载流相金属熔点都比较低,在电弧高温作用下熔成液体,保留在难熔相金属骨架构成的空隙中,防止了熔化金属的大量喷溅,使触头电磨损大大减小
但是韧性都很差
而人工制品 有陶瓷 金属陶瓷 和人造金刚石等等但是绝对说韧性和硬度都超过硬质合金的 我很难给您专业答复 可能某些特种陶瓷有可能满足您的要求 谢谢
陶瓷辊棒简介:它应用于玻璃陶瓷工业中的辊道窑。陶瓷辊棒的主要作用是传输陶瓷或玻璃产品,耐高温高热,需要常清理辊棒表面。目前主要应用广泛的陶瓷辊棒有刚玉辊棒。
1、热稳定性:主要反映辊棒的耐急冷急热性能,好的热稳定性可提高辊棒的使用寿命,从而降低企业的生产成本
2、弯曲强度:由于陶瓷辊棒主要起承重与传输作用,一般都是在高温、负荷作用下工作,弯曲强度是陶瓷辊棒的一个重要指标,从一定程度上来说,弯曲强度越高越好;
3、吸水率:吸水率与辊棒的致密度紧密相连,越是用于高温下的辊棒,要求其吸水率越小;
4、耐火度:是指在无荷重时抵抗高温作用而不熔融和软化的性能,耐火度高说明选用原材料纯度好,杂质含量低,但耐火度并不代表辊棒的最高使用温度,辊棒的使用温度要低于其耐火度;
5、直线度:直线度反应辊棒的平直程度,它是辊棒质量的重要体现,直线度不合格的辊棒容易导致产品变形;
6、陶瓷辊棒是一细长的陶瓷圆筒,在该陶瓷圆筒的筒壁上的两端各设有开孔,可以各是一个或各是两个。通过该开孔,结合金属片或陶瓷片,可以实现方便可靠的与轴承等配件结合,从而提高传动效率,还可以实现以齿轮传动的方式,使该陶瓷辊棒主动转动。避免陶瓷辊棒在皮带传动过程中的卡死、停转堵塞等情况的发生。
毛坯陶瓷是指陶瓷还未上釉成品的那个状态,不过已经捏造成型了。毛坯种类的选择不仅影响毛坯的制造工艺及费用,而且也与零件的机械加工工艺和加工质量密切相关,为此需要毛坯制造和机械加工两方面的工艺人员密切配合,合理地确定毛坯的种类、结构形状,并绘出毛坯图。 常见的毛坯种类有以下几种:
(一)铸件 对形状较复杂的毛坯,一般可用铸造方法制造。大多数铸件采用砂型铸造,对尺寸精度要求较高的小型铸件,可采用特种铸造,如永久型铸造、精密铸造、压力铸造、熔模铸造和离心铸造等。
(二)锻件 锻件毛坯由于经锻造后可得到连续和均匀的金属纤维组织。因此锻件的力学性能较好,常用于受力复杂的重要钢质零件。其中自由锻件的精度和生产率较低,主要用于小批生产和大型锻件的制造。模型锻造件的尺寸精度和生产率较高,主要用于产量较大的中小型锻件。
(三)型材 型材主要有板材、棒材、线材等。常用截面形状有圆形、方形、六角形和特殊截面形状。就其制造方法,又可分为热轧和冷拉两大类。热轧型材尺寸较大,精度较低,用于一般的机械零件。冷拉型材尺寸较小,精度较高,主要用于毛坯精度要求较高的中小型零件。
(四)焊接件 焊接件主要用于单件小批生产和大型零件及样机试制。其优点是制造简单、生产周期短、节省材料、减轻重量。但其抗振性较差,变形大,需经时效处理后才能进行机械加工。
(五)其它毛坯 其它毛坯包括冲压件,粉末冶金件,冷挤件,塑料压制件等。 选择毛坯时应该考虑如下几个方面的因素:
(一)零件的生产纲领 大量生产的零件应选择精度和生产率高的毛坯制造方法,用于毛坯制造的昂贵费用可由材料消耗的减少和机械加工费用的降低来补偿。如铸件采用金属模机器造型或精密铸造;锻件采用模锻、精锻;选用冷拉和冷轧型材。单件小批生产时应选择精度和生产率较低的毛坯制造方法。
(二)零件材料的工艺性 例如材料为铸铁或青铜等的零件应选择铸造毛坯;钢质零件当形状不复杂,力学性能要求又不太高时,可选用型材;重要的钢质零件,为保证其力学性能,应选择锻造件毛坯。
(三)零件的结构形状和尺寸 形状复杂的毛坯,一般采用铸造方法制造,薄壁零件不宜用砂型铸造。一般用途的阶梯轴,如各段直径相差不大,可选用圆棒料;如各段直径相差较大,为减少材料消耗和机械加工的劳动量,则宜采用锻造毛坯,尺寸大的零件一般选择自由锻造,中小型零件可考虑选择模锻件。
(四)现有的生产条件 选择毛坯时,还要考虑本厂的毛坯制造水平、设备条件以及外协的可能性和经济性等。 毛坯的形状和尺寸主要由零件组成表面的形状、结构、尺寸及加工余量等因素确定的,并尽量与零件相接近,以达到减少机械加工的劳动量,力求达到少或无切削加工。但是,由于现有毛坯制造技术及成本的限制,以及产品零件的加工精度和表面质量要求愈来愈来高,所以,毛坯的某些表面仍需留有一定的加工余量,以便通过机械加工达到零件的技术要求。
毛坯尺寸与零件图样上的尺寸之差称为毛坯余量。铸件公称尺寸所允许的最大尺寸和最小尺寸之差称为铸件尺寸公差。毛坯余量与毛坯的尺寸、部位及形状有关。如铸造毛坯的加工余量,是由铸件最大尺寸、公称尺寸(两相对加工表面的最大距离或基准面到加工面的距离)、毛坯浇注时的位置(顶面、底面、侧面)、铸孔的尺寸等因素确定的。对于单件小批生产,铸件上直径小 30mm 和铸钢件上直径小于 60mm 的孔可以不铸出。而对于锻件,若用自由锻,当孔径小于 30mm 或长径比大于 3 的孔可以不锻出。对于锻件应考虑锻造圆角和模锻斜度。带孔的模锻件不能直接锻出通孔,应留冲孔连皮等。
毛坯的形状和尺寸的确定,除了将毛坯余量附在零件相应的加工表面上之外,有时还要考虑到毛坯的制造、机械加工及热处理等工艺因素的影响。在这种情况下,毛坯的形状可能与工件的形状有所不同。例如,为了加工时安装方便,有的铸件毛坯需要铸出必要的工艺凸台,工艺凸台在零件加工后一般应切去。又如车床开合螺母外壳,它由两个零件合成一个铸件,待加工到一定阶段后再切开,以保证加工质量和加工方便。有时为了提高生产率和加工过程中便于装夹,可以将一些小零件多件合成一个毛坯,若滑键为锻件,可以将若干零件先合成一件毛坯,待两侧面和平面加工后,再切割成单个零件。若为垫圈类零件,也应将若干零件合成一个毛坯,毛坯可取一长管料,其内孔直径要小于垫圈内径。车削时,用卡盘夹住一端外圆,另一端用顶尖顶住,这时可车外圆、车槽,然后用卡盘夹住外圆较长的一部分用φ 16mm 的钻头钻孔,这样就可以分割成若干个垫圈零件。
不能从外观区分,要打光谱化验成分来区分。
4j33铁镍钴定膨胀瓷封合金4J33
一、4J33概述
4J33是结合我国的陶瓷特点研制的陶瓷封接合金。合金在-60℃~600℃温度范围内具有与95%Al2O3陶瓷相近的线膨胀系数。主要用于和陶瓷进行匹配封接,是电真空工业中重要的封接结构材料。
1.1 4J33材料牌号 4J33
上海勃西曼
1.5 4J33热处理制度
标准规定的膨胀系数及低温组织稳定性的性能检验试样,在保护气氛或真空中加热到900℃±20℃,保温1h,以不大于5℃/min速度冷至200℃以下出炉。
1.6 4J33品种规格与供应状态
品种有丝、管、板、带和棒材。
1.7 4J33熔炼与铸造工艺
用非真空感应炉、真空感应炉或电弧炉熔炼。
1.8 4J33应用概况与特殊要求
该合金经航空工厂长期使用,性能稳定。主要用于电真空元件与Al2O3陶瓷封接。制造大型电子管和磁控管的电极、引出盘和引出线。在使用中应使选用的陶瓷与合金的膨胀系数相匹配。当选用合金时,应根据使用温度严格检验低温组织稳定性。在加工过程中应进行适当的热处理,以保证材料具有良好的深冲引伸性能。当使用锻材时应严格检验其气密性。
二、4J33物理及化学性能
2.1 4J33热性能
2.1.1 4J33熔化温度范围
该合金熔化温度约为1450℃
2.1.2 4J33热导率
4J33合金热导率λ=17.6W/(m•℃)
上海勃西曼
4J33无缝管、4J33钢板、4J33圆钢、4J33锻件、4J33法兰、4J33圆环、4J33焊管、4J33钢带、4J33直条、4J33丝材及配套焊材、4J33圆饼、4J33扁钢、4J33六角棒、4J33大小头、4J33弯头、4J33三通、4J33加工件、4J33螺栓螺母、4J33紧固件
篇幅有限,如需更多更详细介绍,欢迎咨询了解。
4j34铁镍钴定膨胀瓷封合金
一、4J34概述
4J34是结合我国的陶瓷特点研制的陶瓷封接合金。合金在-60℃~600℃温度范围内具有与95%Al2O3陶瓷相近的线膨胀系数。主要用于和陶瓷进行匹配封接,是电真空工业中重要的封接结构材料。
上海勃西曼
1.5 4J34热处理制度
标准规定的膨胀系数及低温组织稳定性的性能检验试样,在保护气氛或真空中加热到900℃±20℃,保温1h,以不大于5℃/min速度冷至200℃以下出炉。
1.6 4J34品种规格与供应状态
品种有丝、管、板、带和棒材。
1.7 4J34熔炼与铸造工艺
用非真空感应炉、真空感应炉或电弧炉熔炼。
1.8 4J34应用概况与特殊要求
该合金经航空工厂长期使用,性能稳定。主要用于电真空元件与Al2O3陶瓷封接。制造大型电子管和磁控管的电极、引出盘和引出线。在使用中应使选用的陶瓷与合金的膨胀系数相匹配。当选用合金时,应根据使用温度严格检验低温组织稳定性。在加工过程中应进行适当的热处理,以保证材料具有良好的深冲引伸性能。当使用锻材时应严格检验其气密性。
二、4J34物理及化学性能
2.1 4J34热性能
2.1.14J34熔化温度范围该合金熔化温度约为1450℃
2.1.2 4J34热导率
上海勃西曼
2.2 4J34密度
ρ=8.29g/cm3
2.3 4J34电性能
2.3.1 4J34电阻率
ρ=0.45μΩ·m
2.3.2 4J34电阻温度系数
2.4 4J34磁性能
居里点 Tc=470℃
4J34无缝管、4J34钢板、4J34圆钢、4J34锻件、4J34法兰、4J34圆环、4J34焊管、4J34钢带、4J34直条、4J34丝材及配套焊材、4J34圆饼、4J34扁钢、4J34六角棒、4J34大小头、4J34弯头、4J34三通、加4J34工件、4J34螺栓螺母、4J34紧固件
篇幅有限,如需更多更详细介绍,欢迎咨询了解。
一、直接热解法
直接热解法适合以金属的碳酸盐为原料制备氧化锆陶瓷小球。它不仅能充分利用原料,而且环保方法简单,适合工业大规模生产。氧化锆球该工艺关键步骤是煅烧,热分解反应产生大量气体,必须缓慢升温。
二、模具压制法
模具压制法是一种广泛应用的成型方法,氧化锆球该工艺优点是生产效率高,易于自动化制品烧成收缩率小,不易变形。缺点是制得的氧化锆球尺寸较大,球形不好。模具压制法多用于制备棒柱状或圆片形的简单瓷件,且对模具质量要求较高。若制备小尺寸陶瓷球,效率较低。
三、反相悬浮聚合法
悬浮聚合是指借机械搅拌和分散剂使单体呈液滴状分散于悬浮介质中,进行聚合反应的方法。氧化锆球其体系一般由单体、油溶性引发剂、水、分散剂四部分组成。反相悬浮聚合是将水溶性单体在有机溶剂中分散成细液滴而进行的聚合。
铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。
铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。 铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。
金属熔炼不仅仅是单纯的熔化,还包括冶炼过程,使浇进铸型的金属,在温度、化学成分和纯净度方面都符合预期要求。为此,在熔炼过程中要进行以控制质量为目的的各种检查测试,液态金属在达到各项规定指标后方能允许浇注。有时,为了达到更高要求,金属液在出炉后还要经炉外处理,如脱硫、真空脱气、炉外精炼、孕育或变质处理等。熔炼金属常用的设备有冲天炉、电弧炉、感应炉、电阻炉、反射炉等。
随着科技的进步与铸造业的蓬勃发展,不同的铸造方法有不同的铸型准备内容。以应用最广泛的砂型铸造为例,铸型准备包括造型材料准备和造型造芯两大项工作。砂型铸造中用来造型造芯的各种原材料,如铸造砂、型砂粘结剂和其他辅料,以及由它们配制成的型砂、芯砂、涂料等统称为造型材料造型材料准备的任务是按照铸件的要求、金属的性质,选择合适的原砂、粘结剂和辅料,然后按一定的比例把它们混合成具有一定性能的型砂和芯砂。常用的混砂设备有碾轮式混砂机、逆流式混砂机和叶片沟槽式混砂机。后者是专为混合化学自硬砂设计的,连续混合,速度快。
造型造芯是根据铸造工艺要求,在确定好造型方法,准备好造型材料的基础上进行的。铸件的精度和全部生产过程的经济效果,主要取决于这道工序。在很多现代化的铸造车间里,造型造芯都实现了机械化或自动化。常用的砂型造型造芯设备有高、中、低压造型机、抛砂机、无箱射压造型机、射芯机、冷和热芯盒机等。
铸件自浇注冷却的铸型中取出后,有浇口、冒口及金属毛刺披缝,砂型铸造的铸件还粘附着砂子,因此必须经过清理工序。进行这种工作的设备有抛丸机、浇口冒口切割机等。砂型铸件落砂清理是劳动条件较差的一道工序,所以在选择造型方法时 ,应尽量考虑到为落砂清理创造方便条件。有些铸件因特殊要求,还要经铸件后处理,如热处理、整形、防锈处理、粗加工等。
铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。有些难以切削的零件 ,如燃汽轮机的镍基合金零件不用铸造方法无法成形。
另外,铸造的零件尺寸和重量的适应范围很宽,金属种类几乎不受限制;零件在具有一般机械性能的同时,还具有耐磨、耐腐蚀、吸震等综合性能,是其他金属成形方法如锻、轧、焊、冲等所做不到的。因此在机器制造业中用铸造方法生产的毛坯零件,在数量和吨位上迄今仍是最多的。
铸造生产经常要用的材料有各种金属、焦炭、木材、塑料、气体和液体燃料、造型材料等。所需设备有冶炼金属用的各种炉子,有混砂用的各种混砂机,有造型造芯用的各种造型机、造芯机,有清理铸件用的落砂机、抛丸机等。还有供特种铸造用的机器和设备以及许多运输和物料处理的设备。
铸造生产有与其他工艺不同的特点,主要是适应性广、需用材料和设备多、污染环境。铸造生产会产生粉尘、有害气体和噪声对环境的污染,比起其他机械制造工艺来更为严重,需要采取措施进行控制。
铸造产品发展的趋势是要求铸件有更好的综合性能,更高的精度,更少的余量和更光洁的表面。此外,节能的要求和社会对恢复自然环境的呼声也越来越高。为适应这些要求,新的铸造合金将得到开发,冶炼新工艺和新设备将相应出现。
铸造生产的机械化自动化程度在不断提高的同时,将更多地向柔性生产方面发展,以扩大对不同批量和多品种生产的适应性。节约能源和原材料的新技术将会得到优先发展,少产生或不产生污染的新工艺新设备将首先受到重视。质量控制技术在各道工序的检测和无损探伤、应力测定方面,将有新的发展。
铸造及热处理
人类在新石器时代末期,已开始以锤击天然红铜来制造装饰品和小用品。中国约在公元前2000多年已应用冷锻工艺制造工具,如甘肃武威皇娘娘台齐家文化遗址出土的红铜器物,就有明显的锤击痕迹。商代中期用陨铁制造武器,采用了加热锻造工艺。春秋后期出现的块炼熟铁,就是经过反复加热锻造以挤出氧化物夹杂并成形的。
最初,人们靠抡锤进行锻造,后来出现通过人拉绳索和滑车来提起重锤再自由落下的方法锻打坯料。14世纪以后出现了畜力和水力落锤锻造。
1842年,英国的内史密斯制成第一台蒸汽锤,使锻造进入应用动力的时代。以后陆续出现锻造水压机、电机驱动的夹板锤、空气锻锤和机械压力机。夹板锤最早应用于美国内战(1861~1865)期间,用以模锻武器的零件,随后在欧洲出现了蒸汽模锻锤,模锻工艺逐渐推广。到19世纪末已形成近代锻压机械的基本门类。
20世纪初期,随着汽车开始大量生产,热模锻迅速发展,成为锻造的主要工艺。20世纪中期,热模锻压力机、平锻机和无砧锻锤逐渐取代了普通锻锤,提高了生产率,减小了振动和噪声。随着锻坯少无氧化加热技术、高精度和高寿命模具、热挤压,成形轧制等新锻造工艺和锻造操作机、机械手以及自动锻造生产线的发展,锻造生产的效率和经济效果不断提高。
冷锻的出现先于热锻。早期的红铜、金、银薄片和硬币都是冷锻的。冷锻在机械制造中的应用到20世纪方得到推广,冷镦、冷挤压、径向锻造、摆动辗压等相继发展,逐渐形成能生产不需切削加工的精密制件的高效锻造工艺。
早期的冲压只利用铲、剪、冲头、手锤、砧座等简单工具,通过手工剪切、冲孔、铲凿、敲击使金属板材(主要是铜或铜合金板等)成形,从而制造锣、铙、钹等乐器和罐类器具。随着中、厚板材产量的增长和冲压液压机和机械压力机的发展,冲压加工也在19世纪中期开始机械化。
1905年美国开始生产成卷的热连轧窄带钢,1926年开始生产宽带钢,以后又出现冷连轧带钢。同时,板、带材产量增加,质量提高,成本降低。结合船舶、铁路车辆、锅炉、容器、汽车、制罐等生产的发展,冲压已成为应用最广泛的成形工艺之一。
锻压主要按成形方式和变形温度进行分类。按成形方式锻压可分为锻造和冲压两大类;按变形温度锻压可分为热锻压、冷锻压、温锻压和等温锻压等。
热锻压是在金属再结晶温度以上进行的锻压。提高温度能改善金属的塑性,有利于提高工件的内在质量,使之不易开裂。高温度还能减小金属的变形抗力,降低所需锻压机械的吨位。但热锻压工序多,工件精度差,表面不光洁,锻件容易产生氧化、脱碳和烧损。
冷锻压是在低于金属再结晶温度下进行的锻压,通常所说的冷锻压多专指在常温下的锻压,而将在高于常温、但又不超过再结晶温度下的锻压称为温锻压。温锻压的精度较高,表面较光洁而变形抗力不大。
在常温下冷锻压成形的工件,其形状和尺寸精度高,表面光洁,加工工序少,便于自动化生产。许多冷锻、冷冲压件可以直接用作零件或制品,而不再需要切削加工。但冷锻时,因金属的塑性低,变形时易产生开裂,变形抗力大,需要大吨位的锻压机械。
等温锻压是在整个成形过程中坯料温度保持恒定值。等温锻压是为了充分利用某些金属在等一温度下所具有的高塑性,或是为了获得特定的组织和性能。等温锻压需要将模具和坯料一起保持恒温,所需费用较高,仅用于特殊的锻压工艺,如超塑成形。
锻压可以改变金属组织,提高金属性能。铸锭经过热锻压后,原来的铸态疏松、孔隙、微裂等被压实或焊合;原来的枝状结晶被打碎,使晶粒变细;同时改变原来的碳化物偏析和不均匀分布,使组织均匀,从而获得内部密实、均匀、细微、综合性能好、使用可靠的锻件。锻件经热锻变形后,金属是纤维组织;经冷锻变形后,金属晶体呈有序性。
锻压是使金属进行塑性流动而制成所需形状的工件。金属受外力产生塑性流动后体积不变,而且金属总是向阻力最小的部分流动。生产中,常根据这些规律控制工件形状,实现镦粗拔长、扩孔、弯曲、拉深等变形。
锻压出的工件尺寸精确、有利于组织批量生产。模锻、挤压、冲压等应用模具成形的尺寸精确、稳定。可采用高效锻压机械和自动锻压生产线,组织专业化大批量或大量生产。
锻压的生产过程包括成形前的锻坯下料、锻坯加热和预处理;成形后工件的热处理、清理、校正和检验。常用的锻压机械有锻锤、液压机和机械压力机。锻锤具有较大的冲击速度,利于金属塑性流动,但会产生震动;液压机用静力锻造,有利于锻透金属和改善组织,工作平稳,但生产率低;机械压力机行程固定,易于实现机械化和自动化。
未来锻压工艺将向提高锻压件的内在质量、发展精密锻造和精密冲压技术、研制生产率和自动化程度更高的锻压设备和锻压生产线、发展柔性锻压成形系统、发展新型锻压材料和锻压加工方法等方面发展。
提高锻压件的内在质量,主要是提高它们的机械性能(强度、塑性、韧性、疲劳强度)和可靠度。这需要更好地应用金属塑性变形理论;应用内在质量更好的材料;正确进行锻前加热和锻造热处理;更严格和更广泛地对锻压件进行无损探伤。
少、无切削加工是机械工业提高材料利用率、提高劳动生产率和降低能源消耗的最重要的措施和方向。锻坯少、无氧化加热,以及高硬、耐磨、长寿模具材料和表面处理方法的发展,将有利于精密锻造、精密冲压的扩大应用。锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形,以获得具有一定机械性能、一定形状和尺寸的锻件的加工方法。锻造和冲压同属塑性加工性质,统称锻压。
锻造是机械制造中常用的成形方法。通过锻造能消除金属的铸态疏松、焊合孔洞,锻件的机械性能一般优于同样材料的铸件。机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。
锻造按坯料在加工时的温度可分为冷锻和热锻。冷锻一般是在室温下加工,热锻是在高于坯料金属的再结晶温度上加工。有时还将处于加热状态,但温度不超过再结晶温度时进行的锻造称为温锻。不过这种划分在生产中并不完全统一。
钢的再结晶温度约为460℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。
锻造按成形方法则可分为自由锻、模锻、冷镦、径向锻造、挤压、成形轧制、辊锻、辗扩等。坯料在压力下产生的变形基本不受外部限制的称自由锻,也称开式锻造;其他锻造方法的坯料变形都受到模具的限制,称为闭模式锻造。成形轧制、辊锻、辗扩等的成形工具与坯料之间有相对的旋转运动,对坯料进行逐点、渐近的加压和成形,故又称为旋转锻造。
锻造用料主要是各种成分的碳素钢和合金钢,其次是铝、镁、铜、钛等及其合金。材料的原始状态有棒料、铸锭、金属粉末和液态金属。
一般的中小型锻件都用圆形或方形棒料作为坯料。棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。
铸锭仅用于大型锻件。铸锭是铸态组织,有较大的柱状晶和疏松的中心。因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。
经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。粉末锻件内部组织均匀,没有偏析,可用于制造小型齿轮等工件。但粉末的价格远高于一般棒材的价格,在生产中的应用受到一定限制。
对浇注在模膛的液态金属施加静压力,使其在压力作用下凝固、结晶、流动、塑性变形和成形,就可获得所需形状和性能的模锻件。液态金属模锻是介于压铸和模锻间的成形方法,特别适用于一般模锻难于成形的复杂薄壁件。
不同的锻造方法有不同的流程,其中以热模锻的工艺流程最长,一般顺序为:锻坯下料;锻坯加热;辊锻备坯;模锻成形;切边;中间检验,检验锻件的尺寸和表面缺陷;锻件热处理,用以消除锻造应力,改善金属切削性能;清理,主要是去除表面氧化皮;矫正;检查,一般锻件要经过外观和硬度检查,重要锻件还要经过化学成分分析、机械性能、残余应力等检验和无损探伤。
对于铸造工程师以及机械结构设计工程师而言,热处理是一项非常有意义,而具甚高价值用以改进材料品质的方法,借热处理可以改变或影响铸铁的组织及性质,同时可以获得更高的强度、硬度,而改善其磨耗抵抗能力等等。
由于目的不同,热处理的种类非常多,基本主要可分成两大类,第一类是组织构造不会经由热处理而发生变化或者也不应该发生改变的,第二则是基本的组织结构发生变化者。第一热处理程序,主要用於消除内应力,而此内应力系在铸造过程中由於冷却状况及条件不同而引起。组织、强度及其他机械性质等,不因热处理而发生明显变化。对於第二类热处理而言,基地组织发生了明显的改变,可大致分为五类:(1)软化退火:其目的主要在於分解碳化物,将其硬度降低,而提高加工性能,对於球状石磨铸铁而言,其目的在於获得具有甚高的肥力铁组织。(2)正常化处理:主要用改进或是使完全是波来铁组织的铸品获得均匀分布的机械性质。(3)淬火:主要为了获得更高的硬度或磨耗强度,同时的到甚高的表面耐磨特性。(4)表面硬化处理:主要为获得表面硬化层,同时得到甚高的表面耐磨特性。(5)析出硬化处理:主要是为获得高强度而伸长率并不因而发生激烈的改变。
YT15的刀具是用来切削钢类零件的。
YT15是一种钨钴钛类硬质合金,具有高的耐磨性,和高的硬度,一般用于刀具材料。适合于半精车、精车。
YT15:Y,(硬,的汉语拼音第一个字母y);T,含碳化钛,其中含量为15%。
扩展资料:
常用的硬质合金铣刀一般可以为三大类:
1、 钨钴类硬质合金(YG)
常用牌号YG3、YG6、YG8,其中数字表示含钴量的百分率,含钴量愈多,韧性愈好,愈耐冲击和振动,但会降低硬度和耐磨性。因此,该合金适用于切削铸铁及有色金属,还可以用来切削冲击性大的毛坯和经淬火的钢件和不锈钢件。
2、钛钴类硬质合金(YT)
常用牌号有YT5、YT15、YT30,数字表示碳化钛的百分率。硬质合金含碳化钛以后,能提高钢的粘结温度,减小磨擦系数,并能使硬度和耐磨性略有提高,但降低了抗弯强度和韧性,使性质变脆,因此,该类合金适应切削钢类零件。
3、 通用硬质合金
在上述两种硬质合金中加入适量的稀有金属碳化物,如碳化钽和碳化铌等,使其晶粒细化,提高其常温硬度和高温硬度、耐磨性、粘接温度和抗氧化性,能使合金的韧性有所增加,因此,这类硬质合金刀具有较好的综合切削性能和通用性,其牌号有:YW1、YW2和YA6等,由于其价格较贵,主要用于难加工材料,如高强度钢、耐热钢、不锈钢等。
参考资料来源:百度百科-铣刀