贴片式电容的作用
其作用主要是清除由芯片自身产生的各种高频信号对其他芯片的串扰,从而让各个芯片模块能够不受干扰的正常工作。在高频电子振荡线路中,贴片式电容与晶体振荡器等元件一起组成振荡电路,给各种电路提供所需的时钟频率。
贴片式电容有贴片式陶瓷电容、贴片式钽电容、贴片式铝电解电容。贴片式陶瓷电容无极性(如图3),容量也很小(PF级),一般可以耐很高的温度和电压,常用于高频滤波。陶瓷电容看起来有点像贴片电阻(因此有时候我们也称之为“贴片电容”),但贴片电容上没有代表容量大小的数字。
贴片式钽电容的特点是寿命长(如图4)、耐高温、准确度高、滤高频改波性能极好,不过容量较小、价格也比铝电容贵,而且耐电压及电流能力相对较弱。它被应用于小容量的低频滤波电路中。
贴片钽电容与陶瓷电容相比,其表面均有电容容量和耐压标识,其表面颜色通常有黄色和黑色两种。譬如100-16即表示容量100μF,耐压16V。
贴片式铝电解电容拥有比贴片式钽电容更大的容量,其多见于显卡上,容量在300μF~1500μF之间,其主要是满足电流低频的滤波和稳压作用。
直立电容和贴片电容的区别
无论是插件还是贴片式的安装工艺,电容本身都是直立于PCB的,根本的区别方式是贴片工艺安装的电容,有黑色的橡胶底座。贴片式的好处主要在于生产方面,其自动化程度高,精度也高,在运输途中不像插件式那样容易受损。但是贴片工艺安装需要波峰焊工艺处理,电容经过高温之后可能会影响性能,尤其是阴极采用电解液的电容,经过高温后电解液可能会干枯。插件工艺的安装成本低,因此在同样成本下,电容本身的性能可以更好一些。
在性能方面,直立式电容对频率的适应性差一些,不过不到500MHz以上的频率是很难体现出差异的。使用插件式安装的电容中也有很好的产品,例如CHEMICON的PS系列有一部分就是使用插件式的。
瓷片电容,是一种用陶瓷材料作介质,在陶瓷表面涂覆一层金属薄膜,再经高温烧结后作为电极而成的电容器
瓷片电容多作为回路电容器及垫整电容器用于高稳定振荡回路中,起到滤波、去耦、耦合等作用
为什么说瓷片电容是电路中的必须品了?1.去耦:瓷片电容在去耦电路中就叫做“去耦”电容,那么起到的作用自然也就是去耦作用,主要是消除没记放大器见的耦合干扰以及输出信号的干扰
2.耦合:电容的耦合作用主要是为了防止前后两级电路的静态工作点相互影响,起的作用是通交流阻直流,这也是电容重要的特性之一
3.滤波:滤波是电容的用途中比较中要的一部分,几乎所有的电源电路中都会用到
电容越大低频就越容易通过,电容越小高频就越容易通过,因此可以得出容量大的贴片电容滤低频,容量小的电容器滤高频
4.储能:在电路中主要起到充放电的作用
5.时间常数:指过度反应所需要的时间,主要是控制时间常数的大小,从而控制电容充放电的时间
6.中和:用于中和电路中的电容器叫中和电容,多用于收音机和电视机的高频放大器中,用来消除自激和震荡现象
为什么说瓷片电容是电路中的必需品,看完这篇文章你们应该知道答案吧
随着科技的发展,也带动了电容器的发展
高压瓷片电容优点
1.容量损耗随温度频率具高稳定性
2.特殊的串联结构适合于高电压极长期工作可靠性
3.高电流爬升速率并适用于大电流回路无感型结构 .识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。
221表示标称容量为220pF。 224表示标称容量为22x10(4)pF。 在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数字乘上10的-1次方来表示容量大小。
1、材质不同
陶瓷电容无极性,电解电容有极性。
2、容量不同
陶瓷电容的容量一般较小,电解电容的容值可以做得很大。
3、用途不同
陶资电容一般用于信号源滤波,而电解电容一般用于电源部分。
作用:
电解电容器广泛应用于家用电器和各种电子产品中,其容量范围较大,一般为1~33000μF,额定工作电压范围为6.3~700V。其缺点是介质损耗、容量误差较大(最大允许偏差为+100%、-20%),耐高温性较差,存放时间长容易失效。
陶瓷电容高频特性好,多用于高频电路。瓷片电容可滤除高频纹波,故可用作高通滤波。瓷片电容可用于纯交流电路。
参考资料来源:百度百科-陶瓷电容
参考资料来源:百度百科-电解电容
对于大容量的情况,同容量的MLCC从造价上可能要昂贵许多,但在高频段(100kHz以上)频率响应和ESR要优异得多,甚至于在数MHz以上的时候,电解电容已经失去了作为电容的意义,整个基本上全部呈现感性。所以这已经不是价格所能衡量的,也就是说MLCC在高频段也是唯一选择。
需要补充说明的是,并不是所有的MLCC都能取代电解(不考虑价格因素),例如MLCC材质上是有区别的,像X8R/S、X7R/S、X5R/S这些是大容量MLCC比较好的选择,而Y5V、Z5U这些在要求不太高的场合可以应用,因为它的容量随温度的变化太大了。至于C0G、N0P这些材质是最稳定的MLCC,但其容量很难做大,基本上10nF(0.01uF)就已经到极限了。
另外,有些在频率补偿方面有要求的,也不是说MLCC就肯定好过于电解,所谓“成也萧何,败也萧何”,正因其毫欧级的极低ESR,会导致放大器的振荡或者振铃(RING)现象,此时用铝电解或钽电容加小容量MLCC是较好的方法。而且,目前就容量上来说,单片MLCC容量能做到100uF以上的好像就只有太阳诱电一家。当然,如果控制器或转换器的频率足够高的时候,对容量也没有过高的要求了。如果实在要求太高容量,那么只能多个电容并联一途,如此一来,MLCC的优势会有所降低。
再补充一个个人浅见,在瞬间大电流冲击方面,由于电解电容的感性成分较高,所以电解电容被瞬间击坏的可能性要相较于钽电容和MLCC小一些,也就是“皮实”一些,当这些电容都并存于板上时,让电解电容离瞬间电流波动较大的位置近一些。
总的来说,随着放大器或控制器的发展,MLCC将会有越来越广阔的应用,甚至整个电路板上可能再也找不到一个电解电容。
当然,事情总有转机,随着聚合物固态铝电解电容的发展,其ESR和温度性能已与MLCC不相上下,甚至在容量上更是大有赶超。固态铝电解在较好的电脑主板上随处可见,其耐大电流和频率响应品质几乎无可替代。唯一不足的是其耐压普遍不高,这大概是由于低压电子对其需求相对较大而致使中高压固态铝电解的发展动力有所不足吧。
除因温度冷热变化产生热应力导致开裂外,对于环氧包封型高压陶瓷电容,无论是留边型还是满银型电容都存在着电极边缘电场集中和陶瓷-环氧的结合界面等比较薄弱的环节
环氧包封的瓷片电容由于环氧树脂固化冷却过程体积收缩,产生的内应力以残余应力的形式保留在包封层中,并作用于陶瓷-环氧界面,劣化界面的粘结
在电场作用下,组成高压瓷片电容瓷体的钙钛矿型钛酸锶铁类陶瓷(SPBT)会发生电机械应力,产生电致应变
当环氧包封层的残余应力较大时,二者联合作用极可能造成包封与陶瓷体之间脱壳,产生气隙,从而降低电压水平
二:介质内空洞:导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染、烧结过程控制不当等
空洞的产生极易导致漏电,而漏电又导致器件内局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加
该过程循环发生,不断恶化,导致其耐压水平降低
三:包封层环氧材料因素:一般包封层厚度越厚,包封层破坏所需的外力越高
在同样电场力和残余应力的作用下,陶瓷基体和环氧界面的脱粘产生气隙较为困难
另外固化温度的影响,随着固化温度的提高,高压瓷片电容的击穿电压会越高,因为高温固化时可以较快并有效地减少残余应力
随着整体模块灌胶后固化的高温持续,当达到或超过陶瓷电容器外包封层环氧树脂的玻璃转化温度,达到了粘流态,陶瓷基体和环氧界面的脱粘产生了气隙,此时的形变就很难恢复,这种气隙会降低陶瓷电容的耐压水平
四:机械应力裂纹:陶瓷体本身属于脆性较高的材料,在产生和流转过程中较大的应力可能造成应力裂纹,导致耐压降低
常见的应力源有:工艺过程电路板流转操作;流转过程中的人、设备、重力等因素;元件接插操作;电路测试;单板分割;电路板安装;电路板定位铆接;螺丝安装等
导致瓷片电容失效结论一:直接原因:陶瓷-环氧界面存在间隙,导致其耐压水平降低
二:间接原因:二次包封模块固化过程中产生了环氧材料应力收缩,致使陶瓷-环氧界面劣化,形成了弱点放电的路径
三:二次包封模块固化后,样品放置时间过短,其内部界面应力未完全释放出来,在陶瓷-环氧界面存在微裂纹,导致耐压水平降低
瓷片电容(ceramiccapacitor)是一种用陶瓷材料作介质,在陶瓷表面涂覆一层金属薄膜,再经高温烧结后作为电极而成的电容器。通常用于高稳定振荡回路中,作为回路、旁路电容器及垫整电容器。
优点:稳定,绝缘性好,耐高压 缺点:容量比较小
贴片电容全称为:多层(积层,叠层)片式陶瓷电容器,也称为贴片电容,片容。英文全称:Multi-layerceramiccapacitors。英文缩写:MLCC。
贴片电容的分类:
1、NPO电容器
2、 X7R电容器
3、 Z5U电容器
4、 Y5V电容器
区别:NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。