陶瓷工艺原理预烧氧化铝注意事项?
(1)预烧料随着研磨时间的延长,制品烧结密度有明显增加。在同一烧结温度下,不同研磨时间,可使制品体积密度有明显差别。
(2)在1600℃下烧成时,预烧料研磨时间的长短对制品的体积密度和线收缩率有较大影响;而随着烧成温度的逐渐提高,这种影响逐渐减弱,如在1850℃下烧成时,影响很小。
(3)预烧料研磨时间达到一定时间后,再继续延长,对制品的体积密度增加作用不大,故研磨时间应在一定的时间范围内。有研究表明:研磨40h以上,浆料颗粒均小于5μm,制品的刚玉晶粒呈细小柱状,说明再结晶作用不很强烈;而研磨120h的浆料几乎全部小于2/μm,其中小于1/μm的约50%,制品的刚玉晶粒则呈粗大柱状,比前者晶粒大1倍。
因此,研磨必须达到一定时间,使浆料中小于1/μm的含量近50%,有利于坯体的烧结和再结晶。
1、在高温下,陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。 2、制取无机固体材料的一种过程。在利用固相反应制备无机固体化合物时,反应的速率由扩散过程控制,常常需要较高的温度才能使反应有效地进行。另外一些固体化合物是固液相组成的化合物,在熔化时会发生分解反应,故烧结一般应在产物熔点以下进行,以保证得到均匀的物相。但是烧结温度也不能太低,否则会使固相反应的速率太低。在很多情况下,烧结需要在特定的气氛或真空中进行。控制烧结过程的气相分压非常重要,特别是当研究的体系中含有价态可变的离子时,固相反应的气相分压将直接影响到产物的组成和结构。例如,在铜系氧化物高温超导体的合成中,烧结过程必须在严格控制氧分压,以保证得到具有确定结构、组成和铜价态分布的超导材料。 3、是聚四氟乙烯(PTFE)加工过程中的一个重要步骤。聚四氟乙烯预成型品必须通过烧结才能成为有用的制品。烧结是将预成型品加热至熔点(327℃)以上,并在此温度下保持一定时间,使聚合物分子由结晶形逐渐转变为无定型,使分散的树脂颗粒通过相互熔融扩散黏结成一个连续的整体。烧结全的预成型品由透明胶状体冷却成坚固的乳白色的不透明制品。 1、烧结 sintering 粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。 2、填料 packing material 在预烧或烧结过程中为了起分隔和保护作用而将压坯埋入其中的一种材料。 3、预烧 presintering 在低于最终烧结温度的温度下对压坯的加热处理。 4、加压烧结 pressure 在烧结同时施加单轴向压力的烧结工艺。 5、松装烧结 loose-powder sintering,gravity sintering 粉末未经压制直接进行的烧结。 6、液相烧结 liquid-phase sintering 至少具有两种组分的粉末或压坯在形成一种液相的状态下烧结。 7、过烧 oversintering 烧结温度过高和(或)烧结时间过长致使产品最终性能恶化的烧结。 8、欠烧 undersintering 烧结温度过低和(或)烧结时间过短致使产品未达到所需性能的烧结。 9、熔渗 infiltration 用熔点比制品熔点低的金属或合金在熔融状态下充填未烧结的或烧结的制品内的孔隙的工艺方法。 10、脱蜡 dewaxing,burn-off 用加热排出压坯中的有机添加剂(粘结剂或润滑剂)。 11、网带炉 mesh belt furnace 一般由马弗保护的网带将零件实现炉内连续输送的烧结炉。 12、步进梁式炉 walking-beam furnace 通过步进梁系统将放置于烧结盘中的零件在炉内进行传送的烧结炉。 13、推杆式炉 pusher furnace 将零件装入烧舟中,通过推进系统将零件在炉内进行传送的烧结炉。 14、烧结颈形成 neck formation 烧结时在颗粒间形成颈状的联结。 15、起泡 blistering 由于气体剧烈排出,在烧结件表面形成鼓泡的现象。 16、发汗 sweating 压坯加热处理时液相渗出的现象。 17、烧结壳 sinter skin 烧结时,烧结件上形成的一种表面层,其性能不同于产品内部。 18、相对密度 relative density 多孔体的密度与无孔状态下同一成分材料的密度之比,以百分率表示。 19、径向压溃密度 radial crushing strength 通过施加径向压力测定的烧结圆筒试样的破裂强度。 20、孔隙度 porosity 多孔体中所有孔隙的体积与总体积之比。 21、扩散孔隙 diffusion porosity 由于柯肯达尔效应导致的一种组元物质扩散到另一组元中形成的孔隙。 22、孔径分布 pore size distribution 材料中存在的各级孔径按数量或体积计算的百分率。 23、表观硬度 apparent hardness 在规定条件下测定的烧结材料的硬度,它包括了孔隙的影响。 24、实体硬度 solid hardness 在规定条件下测定的烧结材料的某一相或颗粒或某一区域的硬度,它排除了孔隙的影响。 25、起泡压力 bubble-point pressure 迫使气体通过液体浸渍的制品产生第一气泡所需的最小的压力。 26、流体透过性 fluid permeability 在规定条件下测定的在单位时间内液体或气体通过多孔体的数量
1、陶瓷的烧结过程同时发生着物理及化学变化,主要的内容是“结晶”及“晶粒生长”。功能性的陶瓷一般来说其晶粒有一种固定的结构,所谓的化学变化就是让不同的原材料混在一起通过加热,使之“跑”到相应的位置(晶体结构的位置)上。而晶粒会通过“液相传质”及“固相传质”而生长,同时消耗掉周边的原材料或小晶粒,这就是烧结中所发生的物理变化。
2、陶瓷的煤结方法会根据不同的需要采取不同的烧结曲线(有些需要控制气氛),烧结的推动力就是促使晶粒萌发及生长的推动力。也就是影响烧结速率的因素。一般地来说,起始晶粒越小,它的生长能力越强,晶粒所处的晶界的边数越不接近六边,其生长能力越强(也就是说六边的是比较稳定的,生长能力不强),当然具体还要看陶瓷的主体结构和具体的配方。
所以烧结的推动力,一是尽量细小的起始粒度,二是高的温度,三是长的保温时间,再有就是添加剂的加入,促使其在烧结过程中液相传质增多,从而加快晶粒的生长。
3、活性是一个模糊概念,就是指材料发生化学反应及物理反应的能力。其影响因素有很多,如平均粒度、预烧温度(邓烧温度高了对粉体的活性有一定的破坏)、杂质的含量、氧化度(一般的陶瓷都是氧化物,所以氧化度影响很重要)……
活性好,反应就容易发生,烧结需要的温度可以低一点,保温时间可以短一点。但是活性太好了,反应特别容易发生,一旦过头了,就会产生“二次再结晶”(也就是说晶粒尺寸超过了我们想要的尺寸)而使陶瓷的性能恶化,所以反应活性必须控制恰当。
生坯开裂面比较粗糙,炸裂面看起来很光滑。
引起开裂的原因很多,比如材料自身原因,如ZrO2相变并发生体积变化。
粉体太细或颗粒级配不适当可能引起开裂
成型也易引起开裂,比如成型速度过快造成密度分布不均和大量气体残留,成型模具没有倾角也可能造成脱坯时膨胀开裂
烧结升温速度过快容易造成开裂,降温过快则可能引起炸裂
烧结加的成分在高温下收缩(如膨润土);或在降温过程中发生相变而产生体积收缩(如二氧化硅)。
还有就是可能粘结剂选择不合适、成型时压力和保压时间选择不恰当、或者升温速率控制不好等等。
如果里面有胶,排胶过程没有处理好也会导致开裂
(1)烧结温度和保温时间
(2)添加剂:在固相烧结中,少量添加剂(又称烧结助剂)可与主晶相形成固溶体促进缺陷增加;在液相烧结中,添加剂能改变液相的性质(如黏度、组成等),从而起到促进烧结的作用。
(3)原始粉料的粒度:细颗粒由于增加了烧结的推动力,缩短了原子扩散距离和提高颗粒在液相中的溶解度而导致烧结过程的加速。
(4)盐类的选择及其煅烧条件:
(5)成型压力:陶瓷粉料成型时往往施加一定的压力,除了使其有一定形状和一定强度外,同时也给烧结创造了颗粒间紧密接触的条件,使其烧结时扩散阻力减小。一般地,成型压力愈大,颗粒间接触愈紧密,对烧结愈有利。
与块状物相比,粉体具有很大的比表面积,这是外界对粉体做功的结果。利用机械作用或化学作用来制备粉体时所消耗的机械能或化学能,部分将作为表面能而贮存在粉体中,此外,在粉体的制备过程中,又会引起粉粒表面及其内部出现各种晶格缺陷,使晶格活化。由于这些原因,粉体具有较高的表面自由能。粉体的这种表面能是其烧结的内在动力。因此,Al2O3粉体的颗粒越细,活化程度越高,粉体就越容易烧结,烧结温度越低。在氧化铝瓷低温烧结技术中,使用高活性易烧结Al2O3粉体作原料是重要的手段之一,因而粉体制备技术成为陶瓷低温烧结技术中一个基础环节。
目前,制备超细活化易烧结Al2O3粉体的方法分为二大类,一类是机械法,另一类是化学法。机械法是用机械外力作用使Al2O3粉体颗粒细化,常用的粉碎工艺有球磨粉碎、振磨粉碎、砂磨粉碎、气流粉碎等等。通过机械粉碎方法来提高粉料的比表面积,尽管是有效的,但有一定限度,通常只能使粉料的平均粒径小至1μm左右或更细一点,而且有粒径分布范围较宽,容易带入杂质的缺点。近年来,采用湿化学法制造超细高纯Al2O3粉体发展较快,其中较为成熟的是溶胶—凝胶法。由于溶胶高度稳定,因而可将多种金属离子均匀、稳定地分布于胶体中,通过进一步脱水形成均匀的凝胶(无定形体),再经过合适的处理便可获得活性极高的超微粉混合氧化物或均一的固溶体。目前此法大致有以下3种工艺流程。(1)形成金属氧有机基络合物溶胶→水解并缩合成含羟基的三度空间高分子结构→溶胶蒸发脱水成凝胶→低温煅烧成活性氧化物粉料。(2)含有不同金属离子的酸盐溶液和有机胶混合成溶液→溶胶蒸发脱水成凝胶→低温煅烧成粉体。(3)含有不同金属离子的溶胶直接淬火、沉积或加热成凝胶→低温煅烧成粉体。湿化学法制备的Al2O3粉体粒径可达到纳米级,粒径分布范围窄,化学纯度高,晶体缺陷多。因此化学法粉体的表面能与活性比机械法粉体要高得多。采用这种超细Al2O3粉体作原料不仅能明显降低氧化铝瓷的烧结温度(可降150℃—300℃),而且可以获得微晶高强的高铝瓷材料。表二是日本住友化学有限公司生产的易烧结Al2O3粉料理化指标。
此外,有专家推荐以下三种超细Al2O3粉体制备方法,仅供参考:(1)将(NH4)SO4Al2(SO4)3·2H2O与(MgCO3)4Mg(OH)2·5H2O混合、加热到1200℃分解,可获得含有MgO的纯度为99%、粒度为02~05μm的α—Al2O3超细粉料。(2)将无水二醋酸铝加热到1200℃保温3小时以上,可获得粒度小于05μm的α—Al2O3超细粉体。(3)铁筒钢球,湿磨数百小时,浆料加热酸洗除铁,浮选,反复多次,可制取粒度03—05μm的α—Al2O3超细粉料。
二、通过瓷料配方设计掺杂降低瓷体烧结温度
氧化铝陶瓷的烧结温度主要由其化学组成中Al2O3的含量来决定,Al2O3含量越高,瓷料的烧结温度越高,除此之外,还与瓷料组成系统、各组成配比以及添加物种类有关。比如,在Al2O3含量相当时,CaO-Al2O3-SiO2系Al2O3瓷料比MgO-Al2O3-SiO2系瓷料的烧结温度低,对于我国目前大量生产的CaO-MgO-Al2O3-SiO2系统瓷料而言,为使其具有较低的烧结温度与良好性能,应控制其SiO2/CaO处于16~06之内,MgO含量不超过熔剂类氧化物总量的1/3,同时,在配方中引入少量的La2O3、Y2O3、Cr2O3、MnO、TiO2、ZrO2、Ta2O3等氧化物能进一步降低烧结温度、改善瓷体的微观组织结构和性能。因此,在保证瓷体满足产品使用目的和技术要求的前提下,我们可以通过配方设计,选择合理的瓷料系统,加入适当的助烧添加剂,使氧化铝陶瓷的烧结温度尽可能降低。
目前配方设计中所加入的各种添加剂,根据其促进氧化铝陶瓷烧结的作用机理不同,可以将它们分为形成新相或固溶体的添加剂和生成液相的添加剂二大类。
1、与Al2O3形成新相或固溶体的添加剂。
这类添加剂是一些与氧化铝晶格常数相接近的氧化物,如TiO2、Cr2O3、Fe2O3、MnO2等,在烧成中,这些添加物能与Al2O3生成固溶体,这类固溶体或为掺入固溶体(如Ti4+置换Al3+时),或为有限固溶体,或为连续固溶体(如Cr2O3与Al2O3形成的),它们可以活化晶格(TI4+、Al3+离子半径差所致)、形成空穴或迁移原子,(3TiO2AbO33Tia1+Va1+60)以及使晶格产生变形,这些作用使得Al2O3陶瓷易于重结晶而烧结。例如添加05~10%的TiO2时,可使瓷体的烧结温度下降150—200℃。以固相烧结方式为主的高铝瓷常采用这类添加剂,例如某黑色氧化铝陶瓷配方如下(wt%):Al2O391、CoO05、MnO237、Cr2O321、SiO204、TiO220、V2O303,该瓷料在1350℃下保温2小时烧成。
这类添加剂促进氧化铝瓷烧结的作用具有一定的规律性:①能与Al2O3形成有限固溶体的添加剂较形成连续固溶体的添加剂的降温作用更大;②可变价离子一类添加剂比不变价的添加剂的作用大;③阳离子电荷多的、电价高的添加剂的降温作用更大。需要注意的是,由于这类添加剂是在缺少液相的条件下烧结的(重结晶烧结),故晶体内的气孔较难填充,气密性较差,因而电气性能下降较多,在配方设计时要加以考虑。
2、烧成中形成液相的添加剂。
这类添加剂的化学成分主要有SiO2、CaO、MgO、SrO、BaO等,它们能与其它成分在烧成过程中形成二元、三元或多元低共熔物。由于液相的生成温度低,因而大大地降低了氧化铝瓷的烧结温度。当有相当量(约12%)的液相出现,固体颗粒在液相中有一定的溶解度及固相颗粒能被液相润湿时,其促进烧结作用也更显著。其作用机理在于液相对固相表面的润湿力及表面张力,两者使得固相颗粒靠近并填充气孔。此外,烧结过程中因细小有缺陷的晶体表面活性大,故在液相中的溶解度要比大晶体的大得多。这样,烧结过程中小晶体不断长大,气孔减小,出现重结晶。为了防止因重结晶使晶粒过分长大,影响陶瓷的机械性能,在配方设计中需考虑选用一些对晶粒增大无影响甚至能抑制晶粒增大的添加物,如MgO、CuO和NiO等。
目前,在液相烧结的Al2O3瓷料配方中,助烧添加剂可以采用以下3种物料形态来加入。①以天然矿物形态加入。这类矿物原料主要有:高岭土、膨润土等粘土矿。石英、滑石、菱镁矿、白云石、方解石等等,它们分别引入SiO2、MgO、CaO等化学成分。配方中高岭土及其它粘土矿物的使用,除了满足瓷体化学组成要求外,更主要可以改善坯料的成型性能。添加剂的这种加入形式适用于Al2O3含量在90%以下的中铝瓷配料,例如某低温烧结75瓷配方如下(wt%):煅烧Al2O365、高岭土24、膨润土2、BaCO34、方解石3、生滑石2。
②、以人工合成添加剂形态加入。此法是在CaO-Al2O3-SiO2、MgO-Al2O3-SiO2、CaO-MgO-Al2O3-SiO2等三元、四元或其它相图中找到最低共溶物的组成点,预先按组成点的成分将CaO、MgO、SiO2、Al2O3等所需化合物进行第一次配料,经球磨、煅烧成为低共熔物,即“人工合成添加剂”,然后按一定配比将人工合成添加剂与Al2O3粉料进行第二次配料,以满足氧化铝陶瓷化学组成和性能要求。此法纯度高,主要用于降低化学组成准确、性能要求高的高铝瓷烧结温度,缺点是工艺复杂,能耗高,制品成本高,只在特殊情况下采用。
③以化工原料形态加入。在配料时,直接将各种化工原料作为添加剂与Al2O3粉体一起一次完成配料,各助烧添加剂的组成比例仍然是参照专业相图中最低共熔点的组成来设定。生产实践证明,此法不仅与人工合成添加剂法具有同样的降温效果,而且大大简化了工艺,无论配方设计、配料计算和工艺过程都比人工合成添加剂法简便,也比天然矿物形态更容易,瓷质性能稳定,节能效益显著。在实际生产中,从降低成本和坯料成型性能方面考虑,天然矿物原料和化工原料往往是同时使用的。例如某低温烧成(1500℃×2h)的高铝瓷配方如下(wt%);α-Al2O393、苏州土3、烧骨石2、CaCO315、BaCO305、外加ZrO2、CeO2、La2O32%。
三、采用特殊烧成工艺降低瓷体烧结温度
采用热压烧结工艺,在对坯体加热的同时进行加压,那么烧结不仅是通过扩散传质来完成,此时塑性流动起了重要作用,坯体的烧结温度将比常压烧结低很多,因此热压烧结是降低Al2O3陶瓷烧结温度的重要技术之一。目前热压烧结法中有压力烧结法和高温等静压烧结法(HIP)二种。HIP法可使坯体受到各向同性的压力,陶瓷的显微结构比压力烧结法更加均匀。就氧化铝瓷而言,如果常压下普通烧结必须烧至1800℃以上的高温,热压20MPa烧结,在1000℃左右的较低温度下就已致密化了。
热压烧结技术不仅显著降低氧化铝瓷的烧结温度,而且能较好地抑制晶粒长大,能够获得致密的微晶高强的氧化铝陶瓷,特别适合透明氧化铝陶瓷和微晶刚玉瓷的烧结。
此外,由于氧化铝的烧结过程与阴离子的扩散速率有关,而还原气氛有利于阴离子空位的增加,可促进烧结的进行。因此,真空烧结、氢气氛烧结等是实现氧化铝瓷低温烧结的有效辅助手段。
在生产实践中,为获得最佳综合经济效益,上述低烧技术往往相互配合使用,其中加入助烧添加剂的方法相对其它方法而言,具有成本低、效果好、工艺简便实用的特点。在中铝瓷、高铝瓷和刚玉瓷的生产中被广泛使用。另外,从材料角度来看,通过掺杂改性技术,大幅度提高氧化铝陶瓷的各项机电性能,用Al2O3含量低的瓷体代替Al2O3含量高的瓷体,也是企业常用的降低氧化铝陶瓷产品烧结温度的有效技术手段。比如在材料性能满足产品使用要求下,用85瓷代替90瓷或95瓷,用90瓷、95瓷代替99瓷等都是可行的。
虽然氧化铝瓷低烧技术已取得较好的经济效益,但仍有潜力可挖,目前仍有一些产品,从材料的特殊性能要求和高温状态下器件的尺寸稳定性考虑,仍然采用高温烧结,如何将这类产品的烧结温度也降下来,是今后瓷体掺杂改性等低烧技术的努力方向。
影响粘土或坯料烧结温度与温度范围的因素有哪些:
一、通过提高Al2O3粉体的细度与活性降低瓷体烧结温度。
二、通过瓷料配方设计掺杂降低瓷体烧结温度
1、与Al2O3形成新相或固溶体的添加剂。
2、烧成中形成液相的添加剂。
三、采用特殊烧成工艺降低瓷体烧结温度
原理:
是以天然粘土以及各种天然矿物为主要原料,按一定热工制度加热陶瓷坯体,经过粉碎混炼、成型和煅烧,使坯体在高温的特定条件下发生物理化学反应。
最终成为体积固定并具有特定性能的陶瓷制品,它包括由粘土或含有粘土的混合物经混炼,成形,煅烧而制成的各种制品。
扩展资料:
在制陶的温度基础上再添火加温,陶就变成了瓷。陶器的烧制温度在800-1000度,瓷器则是用高岭土在1300-1400度的温度下烧制而成。陶瓷制品的品种繁多,它们之间的化学成分。
矿物组成,物理性质,以及制造方法,常常互相接近交错,无明显的界限,而在应用上却有很大的区别。因此很难硬性地归纳为几个系统,详细的分类法各家说法不一,国际上还没有一个统一的分类方法。常用的有如下两种从不同角度出发的分类法。
参考资料来源:百度百科-陶瓷
固相烧结(只有固相传质)
液相烧结(出现液相)
气相烧结(蒸汽压较高)
按压力分类:常压烧结、压力烧结
按气氛分类:普通烧结、氢气烧结、真空烧结
按反应分类:
固相烧结
液相烧结
气相烧结
活化烧结
反应烧结
特种烧结包括:热压烧结、反应热压烧结、热等静压烧结、微波烧结、超高压烧结、真空(加压)烧结、气氛烧结(气压烧结)、原位加压成型烧结法