分析压电陶瓷换能器的工作原理
压电陶瓷换能器的工作原理是一种人工焙烧制造的可应用于多领域的多晶材料。通过外加电场和外部施加压力的作用,使材料的外部弹性形变和内部电级化发生相互转换,称为电致伸缩效应。烧结而成的铁电体通过电场的极化处理,让杂乱的内部极化现象变得规律有序,产生压电特性。
扩展资料:
由于超声技术的非接触性等优点,尝试把压电陶瓷超声换能器应用在液体浓度检测系统当中。系统中的芯片采用的是Spartan 3E系列FPGA。压电陶瓷换能器在其中担当着发射信号和接收信号的重要功能。把换能器产生的一定频率和幅值的超声信号通过发射电路打入液体内部,经过液体对信号的衰减,从接收换能器端可以接收到带有液体浓度信息的信号。
再通过声衰减法的分析,有效得出液体的近似浓度。系统的软件设计包括主程序,超声测量程序,脉冲控制程序,脉冲收发程序,ADC采集控制程序以及时钟和报警程序。
压电陶瓷换能器的原理是:当对这种陶瓷片施加压力或拉力,它的两端会产生极性相反的电荷,通过回路而形成电流。这种效应称为压电效应。如果把用这种压电陶瓷做成的换能器放在水中,那么在声波的作用下,在其两端便会感应出电荷来,这就是声波接收器。而且,压电效应是可逆的,假如在压电陶瓷片上施加一个交变电场,陶瓷片就会时而变薄时而变厚,同时产生振动,发射声波。这样超声波发射器的问题也就解决了。
某些单晶材料的结构具有非对称特性,当这些材料在外加应力作用下发生应变时,其内部晶格结构(变形)的变化将破坏原来的电中性宏观状态,产生极化电场(电化),所产生的电场(电极化强度)与应变的大小成正比。这种现象被称为正压电效应,是1880年居里兄弟发现的。
随后,在1881年,人们进一步发现这种单晶材料也具有逆压电效应,即当正压电效应的材料受到外加电场的作用时,会有应力和应变产生,其应变与外电场的大小成正比。因压电换能器电声效率高、功率容量大以及结构和形状可以根据不同的应用分别进行设计,在功率超声领域应用广泛。
扩展资料:
压电换能器的主要特点是电声转换效率高,特别是接收灵敏度高,但其机械强度低(脆性大),因此在高功率应用中受到限制(不过目前的最新技术已能达到数百瓦到上千瓦的声辐射功率)。另外,一些单晶材料容易溶于水而失效(水解)。
压电换能器是不分正负极的。因为压电换能器是交流驱动的。但是,与清洗和焊接传感器一样,为了方便起见,与前后盖板连接的电极通常被视为负电极。用于检测的传感器,如果是金属外壳,通常将金属外壳与压电传感器连接,当屏蔽用,这个当负极。
参考资料来源:百度百科-压电式换能器
参考资料来源:百度百科-压电陶瓷换能器
2、压电陶瓷片加锡,先对压电陶瓷片铜/钢基片加锡,由于铜/钢基片散热快,锡不能加多,只是焊接时间延长,一般要在2.5秒以上的时间才能让锡点可靠的附着在铜/钢基片上。再对镀银涂层加锡,要求锡焊点小,加锡时间小于1.5秒即可。
本实验采用压电陶瓷换能器来实现声压和电压之间的转换。它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成。压电陶瓷片由多晶体结构的压电材料锆钛酸铅制成。在压电陶瓷片的两个底面加上正弦交变电压,它就会按正弦规律发生纵向伸缩,从而发出超声波。同样压电陶瓷可以在声压的作用下把声波信号转化为电信号。压电陶瓷换能器在声—电转化过程中信号频率保持不变。
S1作为声波发射器,它把电信号转化为声波信号向空间发射。S2是信号接收器,它把接收到的声波信号转化为电信号供观察。其中S1是固定的,而S2可以左右移动。
由波动理论得知,声波的传播速度v与声波频率 和波长 之间的关系为 。所以只要测出声波的频率和波长,就可以求出声速。其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。时差法可通过测量某一定间隔距离声音传播的时间来测量声波的传播速度。
声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在超声波测距、测量气体温度瞬间变化等方面具有重大意义。超声波在媒质中的传播速度与媒质的特性及状态因素有关。因而通过媒质中声速的测定,可以了解媒质的特性或状态变化。例如,测量氯气(气体)、蔗糖(溶液)的浓度、氯丁橡胶乳液的密度以及输油管中不同油品的分界面等等,这些问题都可以通过测定这些物质中的声速来解决。可见,声速测定在工业生产上具有一定的实用意义。同时,通过液体中声速的测量,了解水下声纳技术应用的基本概念。