建材秒知道
登录
建材号 > 陶瓷砖 > 正文

陶瓷的烧结方法有哪些

美好的大叔
明理的八宝粥
2023-03-18 21:20:15

陶瓷的烧结方法有哪些?

最佳答案
欣喜的果汁
矮小的曲奇
2025-08-14 06:43:11

按传质分类:

固相烧结(只有固相传质)

液相烧结(出现液相)

气相烧结(蒸汽压较高)

按压力分类:常压烧结、压力烧结

按气氛分类:普通烧结、氢气烧结、真空烧结

按反应分类:

固相烧结

液相烧结

气相烧结

活化烧结

反应烧结

特种烧结包括:热压烧结、反应热压烧结、热等静压烧结、微波烧结、超高压烧结、真空(加压)烧结、气氛烧结(气压烧结)、原位加压成型烧结法

最新回答
深情的蜜蜂
平淡的洋葱
2025-08-14 06:43:11

什么是特种陶瓷?特种陶瓷是具有高强、耐温、耐腐蚀特性或具有各种敏感特性的陶瓷材料,由于其制作工艺、化学组成、显微结构及特性不同于传统陶瓷,所以有特种陶瓷之称,又叫先进陶瓷、新型陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷等。那么,特种陶瓷成型工艺你了解多少呢?下面就具体给大家讲讲特种陶瓷成型工艺是什么吧。

什么是特种陶瓷

特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,如高强度、高硬度、高韧性、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、光电、电光、声光、磁光等。由于性能特殊,这类陶瓷可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等方面。一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,

投入大量人力、物力和财力研究开发特种陶瓷,因此特种陶瓷的发展十分迅速,在技术上也有很大突破。特种陶瓷在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。本世纪初特种陶瓷的国际市场规模预计将达到500亿美元,因此许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必定会占据十分重要的地位。

特种陶瓷成型工艺

一、成形方法与结合剂的选择

特种陶瓷成形方法有很多种,生产中应根据制品的形状选择成形方法,而不同的成形方法需选用的结合剂不同。常见陶瓷成形方法、结合剂种类及用量如下所示:

特种陶瓷成形方法、结合剂种类和用量成形方法 结合剂举例

千压法聚乙烯醇缩丁醛等 1~5;浇注法 丙烯基树脂类 1~3;挤压法 甲基纤维素等 5~15;注射法 聚丙烯等 10~25;等静压法 聚羧酸铵等 0~3

结合剂可分为润滑剂、增塑剂、分散剂、表面活性剂(具有分散剂和润滑功能)等,为满足成形需要,通常采用多种有机材料的组合。选择结合剂,要考虑以下因素:

1)结合剂能被粉料润湿是必要条件。当粉料的临界表面张力(yoc)或表面自由能(yos)比结合剂的表面张力(yoc)大时,才能很好地润湿。

2)好的结合剂易于被粉料充分润湿,且内聚力大。当结合剂被粉料润湿时,在相互分子间发生引力作用,结合剂与粉料间发生红结合(一次结合),同时,在结合剂分子内,由于取向、诱导、分散效果而产生内聚力(二次结合)。虽然水也能把杨料充分润湿,但水易挥发,分子量较小,内聚力小,不是好的结合剂。按各种有机材料内聚力大小顺序,用基表示可排列如下:

一CONH一>;-CONH2>;一COOH>;一OH>;-NO2>;-COOC2H5>;一COOCH5>;-CHO>=CO>;-CH3>= CH2>;-CH2

3)结合剂的分子量大小要适中。要想充分润湿,希望分子量小,但内聚力弱。随着分子量增大,结合能力增强。但当分子量过大时,围内聚力过大而不易被润湿,

且易使坯体产生变形。为了帮助分子内的链段运动,此时要适当加入增塑剂,在其容易润湿的同时,使结合剂更加柔软,便于成形。

4)为保证产品质量,还需要防止从结合剂、原材料和配制工序混人杂质,使产品产生有害的缺陷。

在原料配制中,用粉碎、混合等机械方法和结合剂、分散剂配合,达到分散,尽可能不含有凝聚粒子。结合剂受到种类及其分子量,粒子表面的性质和溶剂的溶解性等影响,吸附在原料粒子表面上,通过立体稳 定化效果,起到防止粉末原料凝聚的作用。在成形工序中,结合剂给原料以可塑性,具有保水功能,提高成形体强度和施工作业性。一般来说,结合剂由于妨碍陶瓷的烧结,应在脱脂工序通过加热使其分解挥发掉。因此,要选用能够易于飞散除去以及不含有害无机盐和金属离子的有机材料,才能确保产品质量。

什么,装修还用自己的钱?!装修分期,超低年利率3.55%起,最高可贷100万。立即申请享受优惠

怡然的水池
大气的水杯
2025-08-14 06:43:11
1、在高温下,陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。 2、制取无机固体材料的一种过程。在利用固相反应制备无机固体化合物时,反应的速率由扩散过程控制,常常需要较高的温度才能使反应有效地进行。另外一些固体化合物是固液相组成的化合物,在熔化时会发生分解反应,故烧结一般应在产物熔点以下进行,以保证得到均匀的物相。但是烧结温度也不能太低,否则会使固相反应的速率太低。在很多情况下,烧结需要在特定的气氛或真空中进行。控制烧结过程的气相分压非常重要,特别是当研究的体系中含有价态可变的离子时,固相反应的气相分压将直接影响到产物的组成和结构。例如,在铜系氧化物高温超导体的合成中,烧结过程必须在严格控制氧分压,以保证得到具有确定结构、组成和铜价态分布的超导材料。 3、是聚四氟乙烯(PTFE)加工过程中的一个重要步骤。聚四氟乙烯预成型品必须通过烧结才能成为有用的制品。烧结是将预成型品加热至熔点(327℃)以上,并在此温度下保持一定时间,使聚合物分子由结晶形逐渐转变为无定型,使分散的树脂颗粒通过相互熔融扩散黏结成一个连续的整体。烧结全的预成型品由透明胶状体冷却成坚固的乳白色的不透明制品。 1、烧结 sintering 粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。 2、填料 packing material 在预烧或烧结过程中为了起分隔和保护作用而将压坯埋入其中的一种材料。 3、预烧 presintering 在低于最终烧结温度的温度下对压坯的加热处理。 4、加压烧结 pressure 在烧结同时施加单轴向压力的烧结工艺。 5、松装烧结 loose-powder sintering,gravity sintering 粉末未经压制直接进行的烧结。 6、液相烧结 liquid-phase sintering 至少具有两种组分的粉末或压坯在形成一种液相的状态下烧结。 7、过烧 oversintering 烧结温度过高和(或)烧结时间过长致使产品最终性能恶化的烧结。 8、欠烧 undersintering 烧结温度过低和(或)烧结时间过短致使产品未达到所需性能的烧结。 9、熔渗 infiltration 用熔点比制品熔点低的金属或合金在熔融状态下充填未烧结的或烧结的制品内的孔隙的工艺方法。 10、脱蜡 dewaxing,burn-off 用加热排出压坯中的有机添加剂(粘结剂或润滑剂)。 11、网带炉 mesh belt furnace 一般由马弗保护的网带将零件实现炉内连续输送的烧结炉。 12、步进梁式炉 walking-beam furnace 通过步进梁系统将放置于烧结盘中的零件在炉内进行传送的烧结炉。 13、推杆式炉 pusher furnace 将零件装入烧舟中,通过推进系统将零件在炉内进行传送的烧结炉。 14、烧结颈形成 neck formation 烧结时在颗粒间形成颈状的联结。 15、起泡 blistering 由于气体剧烈排出,在烧结件表面形成鼓泡的现象。 16、发汗 sweating 压坯加热处理时液相渗出的现象。 17、烧结壳 sinter skin 烧结时,烧结件上形成的一种表面层,其性能不同于产品内部。 18、相对密度 relative density 多孔体的密度与无孔状态下同一成分材料的密度之比,以百分率表示。 19、径向压溃密度 radial crushing strength 通过施加径向压力测定的烧结圆筒试样的破裂强度。 20、孔隙度 porosity 多孔体中所有孔隙的体积与总体积之比。 21、扩散孔隙 diffusion porosity 由于柯肯达尔效应导致的一种组元物质扩散到另一组元中形成的孔隙。 22、孔径分布 pore size distribution 材料中存在的各级孔径按数量或体积计算的百分率。 23、表观硬度 apparent hardness 在规定条件下测定的烧结材料的硬度,它包括了孔隙的影响。 24、实体硬度 solid hardness 在规定条件下测定的烧结材料的某一相或颗粒或某一区域的硬度,它排除了孔隙的影响。 25、起泡压力 bubble-point pressure 迫使气体通过液体浸渍的制品产生第一气泡所需的最小的压力。 26、流体透过性 fluid permeability 在规定条件下测定的在单位时间内液体或气体通过多孔体的数量

温柔的睫毛
孝顺的巨人
2025-08-14 06:43:11

导语:如果问陶瓷大家认识吗?这样的问题我想大家都会笑笑不说话,陶瓷谁不认识。中华陶瓷的历史那么的悠久,几乎每个中国人都知道陶瓷是什么,但是如果我今天这样问大家特种陶瓷大家认识吗?那么肯定有或多或少的人回答不上来的,那么不知道朋友也不要担心今天小兔就告诉大家什么是特种陶瓷,希望不知道的朋友能够好好的阅读一下,特种陶瓷大家又管它叫做细陶瓷,在功能上大家对它也有分类,下面就关于特种陶瓷给大家做一个详细的介绍。

一、特种陶瓷的基本介绍

特种陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类。在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能,如:电、磁、光、热、声、化学、生物等功能以及耦合功能,如压电、热电、电光、声光、磁光等功能。

二、特种陶瓷的制作工艺

成形方法与结合剂的选择

特种陶瓷成形方法有很多种,生产中应根据制品的形状选择成形方法,而不同的成形方法需选用的结合剂不同。常见陶瓷成形方法、结合剂种类及用量如下所示:

特种陶瓷成形方法、结合剂种类和用量

成形方法 结合剂举例 <结合剂用量(质量%)

千压法聚乙烯醇缩丁醛等 1~5

浇注法 丙烯基树脂类 1~3

挤压法 甲基纤维素等 5~15

注射法 聚丙烯等 10~25

等静压法 聚羧酸铵等 0~3

结合剂可分为润滑剂、增塑剂、分散剂、表面活性剂(具有分散剂和润滑功能)等,为满足成形需要,通常采用多种有机材料的组合。选择结合剂,要考虑以下因素:

1)结合剂能被粉料润湿是必要条件。当粉料的临界表面张力(yoc)或表面自由能(yos)比结合剂的表面张力(yoc)大时,才能很好地润湿。

2)好的结合剂易于被粉料充分润湿,且内聚力大。当结合剂被粉料润湿时,在相互分子间发生引力作用,结合剂与粉料间发生红结合(一次结合),同时,在结合剂分子内,由于取向、诱导、分散效果而产生内聚力(二次结合)。虽然水也能把杨料充分润湿,但水易挥发,分子量较小,内聚力小,不是好的结合剂。按各种有机材料内聚力大小顺序,用基表示可排列如下:

一CONH一>-CONH2>一COOH>一OH>-NO2>-COOC2H5>一COOCH5>-CHO>=CO>-CH3>= CH2>-CH2

3)结合剂的分子量大小要适中。要想充分润湿,希望分子量小,但内聚力弱。随着分子量增大,结合能力增强。但当分子量过大时,围内聚力过大而不易被润湿,且易使坯体产生变形。为了帮助分子内的链段运动,此时要适当加入增塑剂,在其容易润湿的同时,使结合剂更加柔软,便于成形。

4)为保证产品质量,还需要防止从结合剂、原材料和配制工序混人杂质,使产品产生有害的缺陷。

在原料配制中,用粉碎、混合等机械方法和结合剂、分散剂配合,达到分散,尽可能不含有凝聚粒子。结合剂受到种类及其分子量,粒子表面的性质和溶剂的溶解性等影响,吸附在原料粒子表面上,通过立体稳 定化效果,起到防止粉末原料凝聚的作用。在成形工序中,结合剂给原料以可塑性,具有保水功能,提高成形体强度和施工作业性。一般来说,结合剂由于妨碍陶瓷的烧结,应在脱脂工序通过加热使其分解挥发掉。因此,要选用能够易于飞散除去以及不含有害无机盐和金属离子的有机材料,才能确保产品质量。

特种陶瓷的生产的生产过程是这样算起的,指从放入原料开始,到生产出陶瓷产品的全过程。特种陶瓷的生产过程一定严格的安照操作方法和生产步骤,否则就将会影响到特种陶瓷的产品质量,尤其是特种陶瓷的生产比普通陶瓷的生产更为严格,通常情况下陶瓷产品的生产过程包括三大步,第一步是坯料制造,第二步是坯体成型,那么第三步就是瓷器成型。那么今天关于特种陶瓷的制作工艺就介绍到这里。

魔幻的鸡翅
沉默的便当
2025-08-14 06:43:11

(1)在粉末制备方面,目前最引人注目的是超高温技术。利用超高温技术不但可廉价地研制特种陶瓷,还可廉价地研制新型玻璃,如光纤维、磁性玻璃、混合集成电路板、零膨胀结晶玻璃、高强度玻璃、人造骨头和齿棍等。此外,利用超高温技术还可以研制出象钽、钼、钨、钒铁合金和钛等能够应用于太空飞行、海洋、核聚变等尖端领域的材料。例如日本在4000—15000℃和一个大气压以下制造金钢石,其效率比普遍采用的低温低压等离子体技术高一百二十倍。

超高温技术具有如下优点:能生产出用以往方法所不能生产的物质;能够获得纯度极高的物质:生产率会大幅度提高;可使作业程序简化、易行。在超高温技术方面居领先地位的是日本。据统计,2000年日本超高温技术的特种陶瓷市场规模也将会超过20万亿日元。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶K凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。在这几种方法中,绝大部分是开发研究出来的或是得以完善的。

(2)成型方面:特种陶瓷成型方法大体分为干法成型和湿法成型两大类,干法成型包括钢模压制成型、等静压成型、超高压成型、粉末电磁成型等;湿法成型大致可分为塑性成型和胶态浇注成型两大类。近些年来胶态成型和固体无模成型技术在特种陶瓷的成型研究中也取得了较为快速的发展。

陶瓷胶态成形是高分散陶瓷浆料的湿法成形,与干法成形相比,可以有效控制团聚,减少缺陷。无模成形实际上是快速原型制造技术(Rapid prototyping manufacturing technology,RP &M) 在制备陶瓷材料中的应用。特种陶瓷材料胶态无模成形过程是通过将含或不含粘结剂的陶瓷浆料在一定的条件下直接从液态转变为固态,然后按照RP &M 的原理逐层制造得到陶瓷生坯的过程。成形后的生坯一般都具备良好的流变学特性,可以保证后处理过程中不变形。

特种陶瓷成型技术未来的发展将集中于以下几个发面:

a、进一步开发已经提出的各种无模成形技术在制备不同陶瓷材料中的应用;

b、性能更加复杂的结构层以及在层内的穿插、交织、连接结构和成分三维变化的设计;

c、大型异形件的结构设计与制造;

d、 陶瓷微结构的制造及实际应用;

e、进一步开发无污染和环境协调的新技术。

(3)烧结方面:特种陶瓷制品因其特殊的性能要求,需要用不同于传统陶瓷制品的烧成工艺与烧结技术。随着特种陶瓷工业的发展,其烧成机理、烧结技术及特殊的窑炉设施的研究取得突破性的进展。特种陶瓷的主要烧结方法有:常压烧结法、热压烧结/热等静压烧结法、反应烧结法、液相烧结法、微波烧结法、电弧等离子烧结法、自蔓延烧结法、气相沉积法等。

(4)在特种陶瓷的精密加工方面:特种陶瓷属于脆性材料,硬度高、脆性大,其物理机械性能(尤其是韧性和强度)与金属材料有较大差异,加工性能差,加工难度大。因此,研究特种陶瓷材料的磨削机理,选择最佳的磨削方法是当前要解决的主要问题。

如今兴起的磨削加工方法主要有:

a、超声波振动磨削加工方法;

b、在线电解修整金刚石砂轮磨削加工方法;

c、电解、电火花复合磨削加工工艺;

d、电化学在线控制加工方法。

采用刀具加工陶瓷也引起了人们的极大兴趣。这方面的工作仅处于研究实验阶段,由于用超高精度的车床和金刚石单晶车刀进行加工,以微米数量级的微小吃刀深度和微小的走刀量,能获得0.1微米左右的加工精度,因而许多国家把这种加工技术作为超精密加工的一个方面而加以开发研究,在中国,清华大学新型陶瓷与精细工艺国家重点实验室在这方面的研究成果已位居世界前列。 特种陶瓷由于拥有众多优异性能,因而用途广泛。现按材料的性能及种类简要说明。

(1)耐热性能优良的特种陶瓷可望作为超高温材料用于原子能有关的高温结构材料、高温电极材料等;

(2)隔热性优良的特种陶瓷可作为新的高温隔热材料,用于高温加热炉、热处理炉、高温反应容器、核反应堆等;

(3)导热性优良的特种陶瓷极有希望用作内部装有大规模集成电路和超大规模集成电路电子器件的散热片;

(4)耐磨性优良的硬质特种陶瓷用途广泛,如今的工作主要是集中在轴承、切削刀具方面;

(5)高强度的陶瓷可用于燃气轮机的燃烧器、叶片、涡轮、套管等;在加工机械上可用于机床身、轴承、燃烧喷嘴等。这方面的工作开展得较多,许多国家如美国、日本、德国等都投入了大量的人力和物力,试图取得领先地位。这类陶瓷有氮硅、碳化硅、塞隆、氮化铝、氧化锆等;

(6)具有润滑性的陶瓷如六方晶型氮化硼极为引人注目,国外正在加紧研究;

(7)生物陶瓷方面正在进行将氧化铝、磷石炭等用作人工牙齿、人工骨、人工关节等研究,这方面的应用引起人们极大关注;

(8)一些具有其他特殊用途的功能性新型陶瓷(如远红外陶瓷等)也已开始在工业及民用领域发挥其独到的作用。 (1)特种陶瓷基础技术的研究,例如烧结机理、检测技术和粉末制备技术等;

(2)超导陶瓷的研究;

(3)特种陶瓷的薄膜化或非晶化是提高陶瓷功能的有效方法,因而许多国家都把它作为一项主要内容而加以研究;

(4)陶瓷的纤维化是研制隔热材料、复合增强材料等的重要基础,如今国外,尤其是日本对陶瓷纤维及晶须增强金属复合材料的研究极为重视,其研究主要集中于碳化硅及氮化硅;

(5)多孔陶瓷由于具有特殊结构,所以引起了各界的重视;

(6)陶瓷与陶瓷或陶瓷与其它材料复合(陶瓷纤维增强陶瓷,陶瓷纤维增强金属)问题也是现阶段的研究重点;

(7)在非氮化物陶瓷中,目前国外研究最多的是陶瓷发动机,高压热交挽器及陶瓷刀具等;

(8)随着生物化学,生物医学这些新兴学科的发展,生物陶瓷的开发研究也变得越来越重要。

曾经的毛衣
暴躁的大船
2025-08-14 06:43:11

特种陶瓷成形方法有很多种,生产中应根据制品的形状选择成形方法,而不同的成形方法需选用的结合剂不同。常见陶瓷成形方法、结合剂种类及用量如下

所示:

特种陶瓷成形方法、结合剂种类和用量

成形方法 结合剂举例 <;结合剂用量(质量%)

千压法聚乙烯醇缩丁醛等 1~5

浇注法 丙烯基树脂类 1~3

挤压法 甲基纤维素等 5~15

注射法 聚丙烯等 10~25

等静压法 聚羧酸铵等 0~3

结合剂可分为润滑剂、增塑剂、分散剂、表面活性剂(具有分散剂和润滑功能)等,为满足成形需要,通常采用多种有机材料的组合。选择结合剂,要考虑以下因素:

1)结合剂能被粉料润湿是必要条件。当粉料的临界表面张力(yoc)或表面自由能(yos)比结合剂的表面张力(yoc)大时,才能很好地润湿。

2)好的结合剂易于被粉料充分润湿,且内聚力大。当结合剂被粉料润湿时,在相互分子间发生引力作用,结合剂与粉料间发生红结合(一次结合),同时,在结合剂分子内,由于取向、诱导、分散效果而产生内聚力(二次结合)。虽然水也能把杨料充分润湿,但水易挥发,分子量较小,内聚力小,不是好的结合剂。按各种有机材料内聚力大小顺序,用基表示可排列如下:

一CONH一>;-CONH2>;一COOH>;一OH>;-NO2>;-COOC2H5>;一COOCH5>;-CHO>=CO>;-CH3>= CH2>;-CH2

3)结合剂的分子量大小要适中。要想充分润湿,希望分子量小,但内聚力弱。随着分子量增大,结合能力增强。但当分子量过大时,围内聚力过大而不易被润湿,且易使坯体产生变形。为了帮助分子内的链段运动,此时要适当加入增塑剂,在其容易润湿的同时,使结合剂更加柔软,便于成形。

4)为保证产品质量,还需要防止从结合剂、原材料和配制工序混人杂质,使产品产生有害的缺陷。

在原料配制中,用粉碎、混合等机械方法和结合剂、分散剂配合,达到分散,尽可能不含有凝聚粒子。结合剂受到种类及其分子量,粒子表面的性质和溶剂的溶解性等影响,吸附在原料粒子表面上,通过立体稳 定化效果,起到防止粉末原料凝聚的作用。在成形工序中,结合剂给原料以可塑性,具有保水功能,提高成形体强度和施工作业性。一般来说,结合剂由于妨碍陶瓷的烧结,应在脱脂工序通过加热使其分解挥发掉。因此,要选用能够易于飞散除去以及不含有害无机盐和金属离子的有机材料,才能确保产品质量。 氮化硅等特种陶瓷材料具有高强度、高耐磨性、低密度(轻量化)、耐热性、耐腐蚀性等优良性能,适用于制造涡轮加料机叶轮、摇臂式烧嘴、辅助燃烧室等汽车用陶瓷部件。这些部件要求复杂的形状、高精度尺寸和高可靠性。不允许有内在缺陷(裂纹、气孔、异物等)和表面缺陷。

能满足这些质量要求的成形技术之一,就是陶瓷注射成形法。陶瓷注射成型技术来源于高分子材料的注塑成型,借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成型的,成型之后再把高聚物脱除。比传统的陶瓷加工工艺要简单的多,能制造出各种复杂形状的高精度陶瓷零部件,且易于规模化和自动化生产。

由清华大学材料科学与工程系杨金龙教授发明的CiM(陶瓷胶态注射成型方法及装置)技术在国内该领域中处于领先水平。

陶瓷的注射成型技术有着诸多优点,用它制备复杂形状的陶瓷元件,不仅产品尺寸精度高、表面条件好,而且省去了后加工操作,降低了生产成本,缩短了生产周期,还具有自动化程度高、适合于大规模生产的特点。该工艺一般包括下列步骤:陶瓷粉的选取、粘结剂的选取、陶瓷粉与粘结剂的均匀混合、注射成型、脱脂、烧结。其中脱脂是关键。

起初的陶瓷成型注射技术是将大量的高分子树脂与陶瓷粉体混练在一起后得到混合料,然后装入注射机于一定温度注入模具,迅速冷凝后脱模而制成坯体。该技术适合制备湿坯强度大,尺寸精度高,机械加工量少,坯体均一的产品,适于大规模生产。对形状复杂、厚度较薄产品的制备有着明显的优越性。但是由于含有大量的高分子粘结剂,使陶瓷坯体的脱脂成为不可逾越难题,并且有毛坯易变形,容易形成气孔等缺点。

粘结剂能使粉末填充成预期形状,它对整个工艺有重要的影响。理想的粘结剂应该具有以下特点:

1)在成型温度下纯粘结剂的粘度在1Pa·s以下,流动时不发生与粉体的分离,冷却后有足够的强度和硬度;

2)为惰性物质,与粉体不发生反应;

3)在成型和混合温度以上才分解,分解的产物无毒、无腐蚀性且残余灰分少;

4)膨胀系数低,由热膨胀或结晶引起的残余应力低;

5)符合环保要求,价廉、安全、不吸湿、无易挥发组分,贮藏寿命长。

使用的大多数粘结剂可分为3类:蜡基或油基粘结剂、水基粘结剂和固体聚合物溶液。蜡基粘结剂通常含3-4个组分,聚合物控制着流动粘度、生品(烧结前的坯体)强度和脱脂的特征。短分子链的成型性能好且可使成型元件中的定向作用减至最小。蜡或油是主填充剂,在脱脂的初期被除去。表面活性剂用于改善粉末与粘结剂的相容性。增塑剂用来调节聚合物的流动特性。水基粘结剂含有水溶性聚合物、凝胶或水玻璃。这类粘结剂通常采用低压成型以避免粉末与粘结剂的分离和减少模具磨损及残余应力。由于水易于除去,这使得制造较厚的元件成为可能。粘结剂溶液的凝固或胶凝使生品具有了强度。在烧结前,水从生品中蒸发或升华出去,使变形降至最低程度。新型的、采用聚苯乙烯的固体聚合物溶液的粘结剂配方已经被采用以避免变形。主填充剂用溶液浸渍法除去。由于聚苯乙烯的骨架结构没法被削弱,所以避免了生品的变形。主填充剂是一种小的有机物分子,它既有苯环又有极性集团。苯环使它在混合时可溶于聚苯乙烯,极性集团则使它在脱脂时可溶于水或醇等溶剂中。

常见的粘结剂有聚丙烯(PP)、无规则聚丙烯(APP)、聚乙烯(PE)、乙烯一醋酸乙烯共聚体(EVA)、聚苯乙烯(PS)、丙烯酸系树脂等。其中PE具有优异的成形性;EVA与其他树脂的相溶性好,流动性、成形性也好;APP具有与其他树脂相溶性好、富于流动性和脱脂性的特征;PS流动性好。助剂有蜡石石蜡、微晶石蜡、变性石蜡、天然石蜡、硬脂酸、配合剂等。成形材料的流动性可以使用高式流动点测定器和熔化分度器进行评价。当脱脂具有结合剂的含量多 时,则脱脂性有降低的倾向,助剂的石蜡多者,脱脂性好。如果有机材料在特定的温度区域不能全部飞散掉,就会影响陶瓷的烧结,因此,需要考虑热分解特性,加以选择。 堇青石由于具有耐热性、耐腐蚀性、多孔质性、低热膨胀性等优良材料特性,所以广泛用作汽车尾气净化催化剂用载体。堇青石蜂窝状物利用原料粒子的取向,产生出蜂窝状结构体的低热膨胀,可用挤压成形法来制造。

根据堇青石分子组成(2MgO·2Al2O3·5SiO2),原料可选用滑石、高岭土和氧化铝。成形用坯土从口盖里面的供给孔进入口盖内,经过细分后,向薄壁扩展,再结合,由此求得延伸性和结合性好的质量。另外,作为挤压成形后的蜂窝状体,为了保持形状,坯土的屈服值高者好,也就是说,选择结合剂应使坯土的流动性和自守性两个性能达到最佳化。

原料粉末、结合剂、助剂(润滑剂、界面活性剂等)及水经机械混练后,用螺杆挤压机连续式挤压或用油压柱塞式挤压机挤压成形。一般来说,挤压成形使用的结合剂只要用低浓度水溶液,便可显示出高粘性的结合性能。常用的有甲基纤维素(MC)、羧甲基纤维素(CMC)、聚氧乙烯(PEO)、聚乙烯醇(PVA)、羟乙基纤维素(HEC)等。MC能很好溶于水中,当加热时很快胶化。CMC能很好溶于水中,分散性、稳定性也高。PVA 广泛地用于各种成形。润滑剂可减少粉体间的摩擦,界面活性剂可提高原料粉末与水的润湿性。

缺乏可塑性,具有膨胀特性的坯土使挤压不够光滑,表面缺陷增加。因此,对结合剂的性能应有评价指标。评价还土的可塑性方法,有施加扭曲、压缩、拉伸等应力,求出应力与变形之间的关系,用毛细管流变计的方法、粘弹性的方法等。用这种方法可以评价坯土的自守性和流动性。在用粘弹性的方法评价时,可得出结合剂配合量增加到一定程度时,自守性和流动性均会增加的结果。也就是说,结合剂配合量的增加有助于原料的可塑性增加。

有机材料是特种陶瓷的主要结合剂,合理选用这些有机材料是保证产品质量的关键。在生产中,应根据粉料的特性、制品的形状、成形方法综合进行选择。

负责的铅笔
拼搏的板凳
2025-08-14 06:43:11

特种陶瓷是一种利用陶瓷工艺,却不是原本的陶土材料或是陶土加上其他的物质所制造而成的一种 特殊的材质。特种陶瓷由于他的化学惰性,化学性质相当的稳定。近些年来被大量的进行推广及应用。随着特种陶瓷行业的发展,特种陶瓷的价格不断地下降、质量不断地上升、品种也更加的多样性,应用范围也越来越广泛。

什么是特种陶瓷

特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,如高强度、高硬度、高韧性、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、光电、电光、声光、磁光等。由于性能特殊,这类陶瓷可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等方面。一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此特种陶瓷的发展十分迅速,在技术上也有很大突破。特种陶瓷在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。本世纪初特种陶瓷的国际市场规模预计将达到500亿美元,因此许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必定会占据十分重要的地位。

陶瓷阀芯使用寿命是钢铁十倍

“这种陶瓷阀芯具有耐磨、耐高温、耐腐蚀、硬度强、弹性系数大及无污染等特性,使用寿命是钢铁的十倍,可以与国际上用于航空航天、汽车制造等领域的同类材料相媲美。”在春秋陶瓷总经理郭新端的办公室,一字排开陈列着各种规格的特种陶瓷水龙头阀芯。主营工艺陶瓷出口业务的他,响应政府号召,从广东潮州回归创业,选择把宝押在特种陶瓷上。

而相比仍有待量产的陶瓷阀芯,一种新型的LED陶瓷灯头已经收获不少订单。“目前已经申请了6个实用新型专利,相比传统的LED灯头,它的散热效果更好,使用寿命也更长,得到不少LED厂家的青睐。”在生产车间,郭新端告诉记者,转型进入特种陶瓷领域,是一个可以尝试的战略之举。

事实上,转向特种陶瓷的,远不止春秋陶瓷一家。据德化县委宣传部工作人员介绍,已有不少企业通过与国内一流科研院校合作,引进稀缺专业人才,寻求将陶瓷材料与其他前景广阔的产品嫁接,福杰公司的特种陶瓷轴承就是其中一例。

  

以上就是小编今天要为大家讲述的有关于特种陶瓷的一些相关信息。特种陶瓷从某种意义上来讲已经不属于陶瓷的范畴了,但是因为他的制作方法和传统陶瓷的手法详尽所以我们就称这种新型的材料为特种陶瓷,这是一种特别贴切的叫法。相信随着科学技术的不断发展,将来还会出现特种丝绸、特种木材、特种钢铁等等各种新型材料。