记忆性面料是一种什么类型的新型面料?
进入二十一世纪,高科技材料的发展日新月异,具有记忆功能的智能纤维,将我们的生活带入了梦幻般的奇妙世界。你能想象一下吗?当你一人孤独的旅行时,身上的衣服能够发出动听的音乐,伴你愉悦前行不再寂寞;当你不慎遭遇险情时,身上的衣服会发出救援信号,帮你尽快逃离危险;当你驾驶汽车时,驾驶位上的坐垫会根据你的坐姿,自动调节成贴合身体的曲线形状,使你舒适行驶减轻疲劳。还有许多......,这些都是具有记忆功能的聪明衣服,为我们的生活带来乐趣和便利。
其实具有形状记忆功能的纤维,它是智能材料的一个重要分支。用智能材料制成的纺织品具有对外界刺激感知和反应的能力。从广义讲,能够被记忆的特性很多,如形状、热能、光、电、磁、化学特性等。
迄今为止,具有形状记忆的材料有记忆合金、陶瓷、高聚物、凝胶等。形状记忆材料具有记忆、响应、回复、抗震及适应性等优良特性。形状记忆效应,则是指通过热、化学、机械、光、磁、电等外界刺激,触发材料响应,从而改变材料的形状、位置、应变、硬度、频率、抗震、摩擦等动态或静态技术参数。这些形状记忆材料可以制成薄膜、纤维、丝线、颗粒等品种形式,也可以与其他材料结合制成复合材料。因而其发展也越来越受到重视。
目前国内外纺织企业推出的各种形状记忆纤维:有高分子材料纤维、镍钛合金纤维等。高分子材料形状记忆纤维,其原理就是运用现代高分子物理学和高分子合成改性技术,对通用高分子材料进行分子组合和改性。如对聚乙烯、聚酯、聚异戊二烯、聚氨酯等高分子材料进行分子组合及分子结构调整,使它们同时具备塑料和橡胶的共性,在常温范围内具有塑料的性质,即硬性、形状稳定恢复性,同时在一定温度(所谓记忆温度)下具有橡胶的特性,主要表现为材料的可变形性和形状恢复性,也就是材料的记忆功能,即记忆初始态---固定变形---恢复起始态的循环。
将形状记忆纤维运用到织物上做成服装,服装就具有了某种记忆功能而变得智能化。下面举几个实例说明:英国防护服装研究机构,研制出了一种用于防烫伤的服装,就是应用了形状记忆钛镍合金纤维。首先将形状记忆钛镍合金纤维加工成宝塔式螺旋弹簧状,然后再进一步加工成平面状,最后固定在服装面料内。当这种服装表面接触高温时,形状记忆纤维的形变被触发,纤维迅速由平面状变化成宝塔状,在两层织物内形成很大的空腔,使高温远离人体的皮肤,从而防止烫伤的发生。这种服装在消防救火方面大有用武之地。
意大利一家纺织品公司,开发的智能化衬衣,是利用形状记忆钛镍合金纤维与合成纤维锦纶交织的方法。其织物纱线的设计比例为:五根锦纶丝配一根形状记忆钛镍合金丝。当你所处的周围环境温度升高时,这种智能衬衣的袖子会自动卷起。而且这种衬衣还不怕起皱,即使揉成乱糟糟的一团,用电吹风一吹,马上就能复原,甚至于人的体温也可以自动将其熨平。
形状记忆纤维不仅可用于加工智能服装,也可应用在医学领域。比如将形状记忆温度设置在人体体温附近,那么用这种纤维制成的丝线,就可作为手术缝合线或医疗植入物。由于该材料具有记忆功能,它能以一个松散线团的形式切入伤口,当其被加热到体温时,材料记忆起事先设计好的形状和大小,便会收缩拉紧伤口,待伤口愈合好后,材料自行分解,然后无害地为人体所吸收。
形状记忆纤维作为新出现的高科技智能材料,在服装、建筑、医学、军事等方面都有很大的应用潜力。但是就目前现状而言,在技术方面还有很多需要进一步完善解决的问题,所以智能纤维还没有形成产业化生产。 相信随着时间的推移和科技的进步,以及广大科技工作者的不懈努力,形状记忆纤维的批量化生产亦将成为可能,因此智能纤维的应用领域广泛,前景光明。
陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。
热特性
陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。
电特性
大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。
化学特性
陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。
光学特性
陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。
近年来,形状记忆合金的应用领域不断扩大。例如,已做成喷气战斗机的液压系统导管;利用低质能源的固体发动机;航天工程上的可折叠宇航天线;医学上用的牙齿整畸弓丝;矫正脊椎骨的哈氏棒;电器工业上的自动触头,保安装置;控制上的热敏元件,温度开关;直至玩具和生活用品。
形状记忆合金的热处理主要是围绕其热弹性马氏体相变而展开的。形状记忆效应的含义是:某些具有热弹性马氏体相变动合金材料,在马氏体状态,进行一定限度的变形或变形诱发马氏体后,则在随后的加热过程中,当温度超过马氏体相消失的温度时,材料能完全恢复到变形前的形状和体积。
马氏体相变最初是在钢中发现的现象,并作为钢的热处理技术基础加以研究;而形状记忆合金的记忆效应则是靠材料中发生热弹性马氏体相变所产生的,它已成为马氏体相变领域中占据首要地位的研究课题,并开辟了马氏体应用研究的新领域。现在研究较多的有Ti-Ni,Au-Cd,Cu-Zn,Ag-Cd,Ni-Al,Co-Ni,Fe-Ni等十数个系列。马氏体相变是一种固态相变,是一种伪切变引起原子短程扩散的相变。通过对形状记忆合金的研究,认为只有在具备马氏体相变是热弹性的及马氏体属于对称性低的点阵结构,而母相晶体为对称性较高的立方点阵结构,并且大都是有序的等条件时才会有记忆效应。
具有形状记忆效应的合金称为记忆合金,其形状记忆效应产生的主要原因是相变。大部分形状记忆合金的相变是具有可逆性的热弹性马氏体相变,而温度和应力是热弹性马氏体相变的两个独立变量,因此,形状记忆合金的热处理是影响其形状记忆效应的关键因素之一。热处理工艺主要有以下几个方面。
1. 淬火热处理
母相(奥氏体)经高温迅速淬火会受到淬火空位和位错的交互作用而强化。温度越高强化也更为显著,淬火冷却速度增如也会强化母相,但过分强化又会影响马氏体转变的进行,从而影响记忆回复转变,一般要根据不同材料而选择不同的淬火介质。
2.热预变形处理
为了强化母相(奥氏体)提高滑够变形的抗力,但同时又不能使马氏体相变发生因难,除了合金元素的作用之外,热预变形也是一种有效的方法,即在高温获得奥氏体相后,再在高于Ms点以上温度进行热预变形,则既可以使母相奥氏体得到强化,同时又不产生马氏体,从而使合金的记忆效应得到明显提高。但热预变形温度过高会产生相反影响,使母相强度下降。在应变过程中产生滑移,从而降低记忆效应。同样,热预变形时应变量过大,会使母相内缺陷增多而降低记忆效应。
3. 循环热处理
形状记忆合金在某一温度范围内进行多次循环热处理,然后在室温下变形,则在回复温度下可具有不同程度的双向记忆效应。但时效及约束时效是指对合金施加一定的时效,也是诱发和改善双向形状记忆效应的好方法。
二.储氢合金的热处理
氢作为未来世界最好的二次能源,已越来越受到人们的广泛的关注。即使是在能源自足的当代,使用氢能源也有利于地球的环境保护,减小温室效应的威胁。氧的开发、运输、能源转换等一系列理论和技术问题都需要解决,储氢合金就是在这种情况下产生的。
金属氢化物按其氢键的性质可分为三类:共价键、离子键和金属键。储氢合金的显微组织和力学性能(硬度)均不同程度地影响其储氢特性。因此,储氢合金热处理的目的就在于通过改善其组织来提高其储氢性,主要有以下几类。
l. 凝固时的快淬热处理
凝固时的快速冷却(30m/s的铜轮或水冷铜铸型)可以得到细小的柱状晶组织,从而使储氢合金P-C-T曲线的氢压平台倾斜减小,循环寿命和水利化速度也大为提高。这是因为众多的晶界可释放点阵应力,缓解吸氢的体积变化,并可作为吸放氢时的扩散通道,从而提高了活化速度。同时,快速冷却也抑制了化学成分的不均匀性,改善了原子的有序性。
2.低温去应力热处理
储氢合金在凝固时快速冷却会导致组织中形成大量晶体缺陷和硬度升高,对其进行低温处现理可消你快淬点阵缺陷,降低合金的硬度,提高其韧性,抑制粉化和崩裂,从而提高合金和循环寿命。
3. 高温扩散处理
铸态下的储氢合金组织是不均匀的,存在着成分偏聚区。高温扩散处理有利于基体相的成分均匀化,从而减缓循环容量的衰减,提高循环寿命。
三.陶瓷材料的热处理
热处理对陶瓷材料的显微结构尤其是材料中的应力分布状态有明显的影响。通过热处理促使晶界上残留的玻璃相析出,提高品界耐火度,是有效提高陶瓷材料高温强度的措施之一。另外,经热处理获得所需晶界状态,从而改善陶瓷的传热性能,对提高抗热振性也有重要意义。
通过热处理改变材料中的应力分布状态,对玻璃陶瓷抗热振性能的改善有明显效果。Gbauer对铝硅酸盐玻璃的研究表胡,经淬火处理在材料表面引入压应力之后,与未经热处理的材料相比,其室温强度和临界热振温差都显著提高。研究表明,在临界热振温差之后的微裂纹亚临界扩展之后,残留强度又重新回升,并超过了材料的原始强度值,这是由于热振温差越过某一定值后,热振温差越大就越接近于淬火强化现象。玻璃陶瓷所具有的这种淬火强化现象,对于其实际应用具有重要意义。本文所述及的陶瓷不同于普通的民用陶瓷,由于其具有许多特殊性能而被称为特种陶瓷材料。对于特种陶瓷的热处理,其工艺过程也突破了金属材料中所使用的热处理工艺。一般地说,陶瓷的热处理主要是为了增加其韧性和抗热振损伤性能,它的热处理大致可分为以下几种操作;如煅烧、烧结、相变处理、表面(热)处理等。
烧结是陶瓷材料在高温下的致密化过程。随着温度的升高和热处理时间的延长,固体颗粒相互键联,晶粒长大,空隙和晶界逐渐减少,通过物质的传递,其总体体积收缩,密度增加,当达到一定温度和一定处理时间,颗粒之间结合力呈现极大值。超过极大值后,就会出现晶粒增大,机械强度减小的现象。此外,对于具有同素异构体的陶瓷材料,会在不同热处理温度下发生晶型和结晶形态变化(相变),从而达到增韧的效果。
表面热处理主要是通过改变材料表面的组成、结构状态等因素,改变表面的应力状态、表层的热学、力学性能等来影响陶瓷材料的抗热振性能。据报道,SiC/Al2O3复合材料经1450℃高温下长时间氧化后生成的表面氧化层可处于残余应力状态,且明显降低了表面传热系数值,从而增强了复合材料抗热振断裂能力。其原因主要是复合材料表面生成了高强、低模量、低热膨胀系数里呈多孔状微观结构的莫来石和少量氧化铝的氧化层。
从发展的趋势上看,高抗热振性的陶瓷材料正向着致密、高强化和多孔低密、轻质化两个方向发展。实际工作中,应根据材料的应用环境、服役条件及可靠性要求来选择材料,然后合理设计材料的显微结构,再考虑热处理和表面处理以便进一步改善抗热振性能。
四.金属间化合物材料的热处理
金属间化合物主要是指金属元素间、金属元素与类金属形成的化合物,各元素间既有化学计量的组分,但其成分又可在一定范围内变化而形成以化合物为基的固熔体。金属间化合物以其介于金属和阿瓷间的优异性能,而成为新型结构材料的重要分支,并获得广泛的应用。
l. 热处理方式
热处理的目的在于获得某种有序结构,以改善其塑性和韧性。主要有如下几种处理方式。
(1)高温均匀化退火 铸态下的金属间化合物一般存在着成分偏析和铸造应力,高温均匀化退火就是要消除铸造应力并使合金元素进一步扩散均匀,为下一步处理奠定良好的基础,该种处理一般在1000℃以上要持续十几个小时。
(2)油淬 为了增加金属间化合物的室温韧性,常常将其加热到晶形转变或相变温度,然后放入油中进行淬火处理,如对Fe-Al金属间化合物的典型处理工艺为:加热至1000℃,保温5h,然后置入700℃油中冷却。
(3)形变热处理 这是目前为增加金属间化合物韧性而进行的最有效的处理方式,主要是通过锻造、轧制、挤压等热形变处理,使其组织结构发生有利于增加韧性的方向转变。
金属间化合物的室温脆性问题一直是困扰这类材料应用的一个问题。同一成分的合金,由于加工方法不同及工艺参数的改变,最终的显微组织和力学性能可能相差甚远,在金属间化合物的制备中广泛采用了热机械处理工艺,采用这种方法能够得到一般加工处理所达不到的高强度与高塑性良好配合的产品。
2. 发展及应用前景
在金属材料中,金属间化合物一直用作金属基体的强化相。人们通过改变金属间化合物的种类、分布、析出状态以及相对含量等来达到控制基体材料性能的目的。由于具有许多独特的性能,金属间化合物本身作为一类新型材料正得到日益广泛的研究和开发。金属间化合物由于具有耐高温、抗腐蚀的性能,成为航空、航天、交通运输、化工、机械等许多工业部门重要结构材料;由于其具有声、光、电、磁等特殊物理性能,可作为半导体、磁性、储氢、超导等方面功能材料。特别是用作高温结构材料的有序金属间化合物,具有许多良好的力学性能和抗氧化、耐腐蚀以及比强度高等特性,由于其原子的长程有序排列和原子间金属健和共价键的共存,使其有可能兼具金属的塑性和陶瓷的高温强度,因而极具应用前景。
然而,金属间化合物的脆性妨碍了它的应用。直到80年代初,金属间化合物韧化研究取得两大突破性进展,一是日本材料科学研究所的和泉修等在脆性的多晶Ni3Al中加入了质量分数为0.02%~0.05%的B,使材料韧化,室温拉伸伸长率从近于0提高到40%~50%;二是美国橡树岭国家实验室发现了无塑性的六方D019结构的Co3V中,用Ni、Fe代替部分Co,可使其转变成面心立方的L12结构,脆性材料变成具有良好塑性的材料。这些进展使人们看到了金属间化合物高温结构材料的希望和前景,在世界范围内掀起一个研究热潮。
目前作为高温结构材料的有序金属间化合物,在国内外进行重点研究并取得重大进展的主要为Ni-Al、Ti-Al以及Fe-Al三个体系的A3R和AB型铝化物。
转自:中国机械网 (编辑:汕头中小在线)
参考资料:http://www.smegdst.cn/stnews.asp?id=9709
1 单品的话(低成本)
A 绘制图样,图样分层,底层瓷板尺寸(按瓷板收缩率提前算好)突起高度较浅的部分一层(树叶 寿山石 人物),较高的部分一层(树 干部分),另外有的瓷板浮雕层次更多,甚至加入了一些圆雕透雕技法在里面,相应需要分的层 数也更多。
B 更具绘制的图样压制相应尺寸的泥板作为底板,注意压制完的泥板不要随意扳动,泥土具有记忆性,随意摆动压制好的泥板,即使后来又挀平了,烧完以后还是会变形。
C 用相同干湿度泥料压制下一层泥片,根据绘制图样裁切外形,泥浆湿粘到上一层泥片位置,用木制雕刀雕塑机理纹样。
D 用同上一部的方法,雕塑下一层机理纹样
E 阴干后素胚烧制 ,烧完素胚后打磨修正,施釉后高温成瓷。
2 单品(高成本)
A 绘制图样,根据图样3D建模(要跟下一步机器匹配)
B 利用雕刻机对阴干好的泥板进行雕刻
C 对雕刻好的泥板进行修正
D 素烧 修整 施釉 釉烧
3 批量生产
A 利用前面两种方法制作模种
B 对模种不能一次脱模的细节,容易卡模具部分进行填补,填补完后批量制作阴刻磨具
C 利用印模对泥板进行印胚(如果浮雕高低层次过于复杂,可以分层印胚后湿粘起来,相应的磨具也要分两层甚至几层进行)
D 阴干后,用刻刀对细节进行雕刻处理
E 素烧 修整 施釉 釉烧
以上仅是介绍了几种常规方法,根据制作师傅的习惯,有些步骤稍有不同(批量生产模种做法也很多),大致流程都是这样,希望对你有帮助
1963年,美国海军军械研究室在一项实验中需要一些镍钛合金丝,他们领回来的合金丝都是弯弯曲曲的。为了使用方便,他们就将这些弯弯曲曲的细丝一根根地拉直后使用。在后续实验中,一种奇怪的现象出现了:当温度升到一定值的时候,这些已经被拉得笔直的合金丝,突然又魔术般地迅速恢复到原来的弯弯曲曲的模样,而且和原来的形状丝毫不差。经过反复多次实验,每次结果都一样,被拉直的合金丝只要达到一定温度,便立即恢复到原来那种弯弯曲曲的模样。就好像在“冻”得失去知觉时被改变了形状,而当温度升高到一定值的时候,它们突然“苏醒”过来,又“记忆”起了自己原来的模样,于是便不顾一切地恢复了自己的“本来面目”。
后来,科学家又发现另一些合金体系,如金镉、铜镍、铜铝、铜锌和铁锰系合金等,也有类似的`“永不忘本”的“记忆”能力,于是给它们起了个好听的名字——形状记忆合金。除了记忆合金外,科学家在陶瓷中也发现了类似的记忆效应,并将其命名为形状记忆陶瓷。
形状记忆合金不仅单次“记忆”能力几乎可达百分之百,即恢复到和原来一模一样的形状,更可贵之处在于这种“记忆”本领即使重复500万次以上也不会产生丝毫疲劳或断裂。这是为什么?
原来,一般金属材料受到外力作用后,会发生弹性变形,达到屈服点,产生塑性变形,压力消除后留下永久变形。但有些合金,在发生了塑性变形后,内部处于一种不稳定的结构,只要对其加热到一定温度,又会转变成原来的稳定结构。这种现象就叫形状记忆效应。
随着科学家对形状记忆合金的深入研究,这种神奇的材料在机械、电子、化工、宇航、能源和医疗等许多领域的新用途被不断地开发出来。
长沙窑铜官陶瓷烧制技艺首创世界陶瓷的釉下多彩记忆。
根据记载,早在殷商的时候,舜帝就带领民众在湘江一带制陶了,到了唐朝时长沙窑铜官窑制陶技艺已经十分纯熟了,它首创的陶瓷釉下多彩新工艺提高了铜官窑的市场竞争力,扩展陶瓷市场,成品极具美感。
长沙窑铜官窑烧陶技术形成过程极为悠久,根据《鉴略妥注》中记载,早在殷商的时候,舜帝就带领民众在湘江一带开始了制陶业,到了唐代的时候,长沙窑铜官陶瓷技艺就已经非常成熟了,是和景德镇陶并列的中国最为陶瓷技艺。
长沙窑铜官窑烧陶技术介绍:
在铜官窑,首创了陶瓷釉下多彩新工艺,这主要是为了提高铜官窑的市场竞争力,也是为了拓展陶瓷的新市场。
在当时,先民们在实践探索中发现了孔雀石、洞庭潮泥、山坡黄泥、铜粉、柴灰、石灰等显色基料,用这些基料相互搭配,就能产生青、黄、蓝、绿、褐、黑、铜红等釉色,且浓淡相宜,极具美感,艺术价值高。
①按用途来分,可分为日用陶瓷,艺术(陈列)陶瓷,卫生陶瓷,建筑陶瓷,电器陶瓷,电子陶瓷,化工陶瓷,纺织陶瓷,透千(燃气输机)陶瓷等等。
②按是否施釉来分,可分为有釉陶瓷和无釉陶瓷两类。
③人们为了生产、研究和学习上的方便,有时不按化学组成,而根据陶瓷的性能,把它们分为高强度陶瓷,铁电陶瓷、耐酸陶瓷,高温陶瓷、压电陶瓷,高韧性陶瓷,电解质陶瓷、光学陶瓷(即透明陶瓷),磁性陶瓷,电介质陶瓷,磁性陶瓷和生物陶瓷等等。
④可简单分为硬质瓷,软质瓷、特种瓷三大类。
我国所产的瓷器以硬质瓷为主。硬质瓷器,坯体组成熔剂量少,烧成温度高,在1360℃以上色白质坚,呈半透明状,有好的强度,高的化学稳定性和热稳定性,又是电气的不良传导体,如电瓷、高级餐具瓷,化学用瓷,普通日用瓷等均属此类,也可叫长石釉瓷。
软质瓷器与硬质瓷不同点是坯体内含的熔剂较多,烧成温度稍低,在1300℃以下,因此它的化学稳定性,机械强度,介电强度均低,一般工业瓷中不用软质瓷,其特点是半透明度高,多制美术瓷,卫生用瓷,瓷砖及各种装饰瓷等,通常如骨灰瓷、熔块瓷属于此类。
特种瓷种类很多,多以各种氧化物为主体,如高铝质瓷,它是以氧化铝为主,镁质瓷,以氧化镁为主;滑石质瓷,以滑石为主;铍质瓷,以氧化铍或绿柱石为主;锆质瓷,以氧化锆为主;钛质瓷,以氧化钛为主。
上述特种瓷的特点多是,由不含粘土或含极少量的粘土的制品,成型多用干压、高压方法,在国防工业,重工业中多用此类瓷,如火箭,导弹上的挡板,飞机、汽车上用的火花塞,收音机,内用的半导体,快速切削用的瓷刀等等。