建材秒知道
登录
建材号 > 陶瓷砖 > 正文

多孔陶瓷的特点

天真的柠檬
高挑的含羞草
2023-01-26 14:04:42

多孔陶瓷的特点

最佳答案
自觉的眼神
孤独的乌龟
2025-10-27 11:05:33

(1)气孔率高。多孔陶瓷的重要特征是具有中较多的均匀可控的气孔。气孔有开口气孔和闭口气孔之分,开口气孔具有过滤、吸收、吸附、消除回声等作用,而闭口气孔则有利于阻隔热量、声音以及液体与固体微粒传递。

(2)强度高。多孔陶瓷材料一般由金属氧化物、二氧化硅、碳化硅等经过高温煅烧而成,这些材料本身具有较高的强度,煅烧过程中原料颗粒边界部分发生融化而粘结,形成了具有较高

强度的陶瓷。

(3)物理和化学性质稳定。多孔陶瓷材料可以耐酸、碱腐蚀,也能够承受高温、高压,自身洁净状态好,不会造成二次污染,是一种绿色环保的功能材料。

(4)过滤精度高,再生性能好。用作过滤材料的多孔陶瓷材料具有较窄的孔径分布范围和较高的气孔率与比表面积,被过滤物与陶瓷材料充分接触,其中的悬浮物、胶体物及微生物等污染物质被阻截在过滤介质表面或内部,过滤效果良好。多孔陶瓷过滤材料经过一段时间的使用后,用气体或者液体进行反冲洗,即可恢复原有的过滤能力。

材质

(1)高硅质硅酸盐材料,它主要以硬质瓷渣、耐酸陶瓷渣及其他耐酸的合成陶瓷颗粒为骨料,具有耐水性、耐酸性,使用温度达700℃。

(2)铝硅酸盐材料,它以耐火粘土熟料、烧矾土、硅线石和合成莫来石颗粒为骨料。具有耐酸性和耐弱碱性,使用温度达1 000℃。

(3)精陶质材料,它以多种粘土熟料颗粒与粘土等混合烧结,得到微孔陶瓷材料。

(4)硅藻土质材料,它主要以精选硅藻土为原料,加粘土烧结而成。用于精滤水和酸性介质。

(5)纯炭质材料,它以低灰分煤或石油沥青焦颗粒为原料,或加入部分石墨,用稀焦油粘结烧制而成,用于耐水、冷热强酸、冷热强碱介质以及空气的消毒和过滤等。

(6)刚玉和金刚砂材料,它以不同型号的电熔刚玉和碳化硅颗粒为骨料,具有耐强酸、耐高温的特性

(7)堇青石、钛酸铝材料,其特点是热膨胀系数小,因而广泛用于热冲击环境。

添加剂

(1)助熔剂

陶瓷助熔剂的主要作用是降低烧成温度,增加液相,扩大烧成范围,提高坯体的力学强度和化学稳定性。常用的助熔剂有长石、珍珠岩、滑石、蛇纹石、硅灰石、石灰石、白云石等。

(2)增塑剂

陶瓷增塑剂主要作用是提高陶瓷坯体的整体塑性,保证坯体具有一定的强度,使坯体在烧成前保持原有形状。常用的增塑剂有粘性土、木节土、球土等。

(3)粘结剂

粘结剂是指为了提高坯体的强度或防止粉末偏析而添加到陶瓷坯料中的具有粘结作用的添加剂。粘结剂一般选择易于在烧结前或烧结过程除掉的物质,如淀粉、石蜡、羧甲基纤维素、聚乙烯醇等。水玻璃具有较好的粘性,水分挥发后留下的硅酸钠可以作为陶瓷的成分,所以也常被用作粘结剂。

(4)致孔剂

加入致孔剂是为了提高陶瓷的气孔率、扩大比表面积。致孔剂主要有天然有机细粉、煤粉、石灰石、白云石、烧沸石、珍珠岩、浮石等。一般来讲,增加致孔剂的用量可以提高陶瓷的气孔率,但是会引起陶瓷强度下降,因此必须控制致孔剂的添加比例。以石灰石和白云石作致孔剂时,在煅烧过程分解生成的CaO和MgO具有助熔作用,如果在煅烧温度过高、时间过长,会与原料中的部分物质形成玻璃相,填充部分已形成的气孔,降低陶瓷的气孔率

(5)流变剂

浆料的流动性能保证浆料在浸渍过程中能渗透到有机泡沫中,并均匀地涂敷在泡沫网络的孔壁上。浆料的触变性即要求浆料具有在静止时处于凝固状态,但在外力作用下又恢复流动性的特性。良好的触变性可以保证在浸渍浆料和挤出多余浆料时,在剪切作用下降低粘度,提高浆料的流动性,有助于成型,而在成型结束时,浆料的粘度升高,流动性降低。这就使得附着在孔壁上的浆料容易固化而定型,避免了因为浆料的流动造成坯体严重堵孔而影响制品的均匀性。

(6)分散剂

为了提高浆料的固含量,无论是水基体系还是非水基体系均需加入分散剂。分散剂可以提高浆料的稳定性,阻止颗粒再团聚,进而提高浆料的固含量。

(7)消泡剂和表面活性剂

为了防止浆料在浸渍和挤出多余浆料的过程中起泡而影响制品的性能,需加入消泡剂,一般采用低分子量的醇和硅酮。陶瓷浆料为水基浆料时,如果有机泡沫与浆料之间的润湿性差,在浸渍浆料时就会出现泡沫结构的交叉部分附着较厚的浆料,而在结构的桥部和棱线部分附着很薄的浆料的现象。这种情况严重时会导致烧结过程中坯体开裂,使多孔陶瓷的强度明显降低。因此,通常采用添加表面活性剂的方法以改善陶瓷浆料与有机泡沫体之间的附着性来解决此问题。

制备

发泡工艺

发泡工艺是陶瓷组分添加有机或无机化学物质,通过化学反应等产生挥发气体,经干燥和烧成制成多孔陶瓷。发泡工艺与泡沫浸渍工艺相比,更容易控制制品的形状、成分和密度,并可制备各种气孔形状和大小的多孔陶瓷,特别适用于制备闭气孔的陶瓷材料。用来做发泡剂的化学物质有很多种类,例如,用碳化钙、氢氧化钙、铝粉硫酸铝和双氧水作发泡剂由亲水性聚氨脂塑料和陶瓷泥浆同时发泡制备多孔陶瓷用硫化物和硫酸盐混合作发泡剂等。

添加成孔剂工艺

此工艺是通过在陶瓷配料中添加造孔剂,利用造孔剂在坯体中占据一定的空间,然后经过烧结,造孔剂离开而形成气孔来制备多孔陶瓷。添加造孔剂制备多孔陶瓷的工艺流程与普通的陶瓷工艺流程相似。造孔剂的种类有无机和有机两类,无机造孔剂有碳酸铵、碳酸氢铵、氯化铵等高温可分解的盐类,以及煤粉、碳粉等。有机造孔剂主要是天然纤维、高分子聚合物和有机酸等。造孔剂颗粒的形状和大小决定了多孔陶瓷材料气孔的形状和大小。多孔陶瓷材料的成型方法与普通陶瓷的成型方法类似,主要有模压、挤压、等静压、扎制、注射和粉浆浇注等。

有机泡沫浸渍工艺

有机泡沫浸渍法是用有机泡沫浸渍陶瓷浆料,干燥后烧掉有机泡沫,获得多孔陶瓷的一种方发泡工艺法。该法适于制备高气孔率、开口气孔的多孔陶瓷。这种方法制备的泡沫陶瓷是目前最主要的多

孔陶瓷之一。

溶胶-凝胶工艺

溶胶- 凝胶工艺主要利用凝胶化过程中胶体粒子的堆积以及凝胶处理、热处理等过程中留下小气孔,形成可控多孔结构。这种方法大多数产生纳米级气孔,多用来生产微孔陶瓷。溶胶-凝胶工艺是一种新的制备多孔陶瓷的工艺,与其它工艺相比有其独特之处。例如,用溶胶-凝胶法制备氧化铝多孔陶瓷,与颗粒混合、泡沫浸渍、喷雾干燥颗粒等方法相比较,溶胶-凝胶法可进一步改善氧化铝多孔陶瓷孔径分布的控制、相变、纯度及显微结构。

挤出成型多孔蜂窝陶瓷

蜂窝陶瓷的成型方法有许多种,挤出成型是最普遍采用的制造方法之一。它的工艺流程为:原料合成-混和-挤出成型-干燥-烧成制品

固相烧结工艺

固相烧结工艺利用微细颗粒易于烧结的特点,在骨料中加入相同组分的微细颗粒,在一定的温度下微细颗粒通过蒸发和迁移,在大颗粒连接部烧结,从而将大颗粒连接起来。由于每一粒骨料仅在几个点上与其他颗粒发生连接,因而在烧结体中形成大量的三维贯通孔道。

凝胶注模工艺

凝胶注模工艺源于20世纪90年代,美国橡树岭国家实验室最早将传统陶瓷成型技术与高分子化学反应结合在一起,研制出这种新型陶瓷制备工艺。凝胶注模工艺过程是一个原位成型过程,主要利用有机单体或少量添加剂的化学反应原位凝固成型,获得具有良好微观均匀性和一定强度的坯体,而后烧结制得成品。

冷冻干燥工艺

在该工艺中,让冰将柱状的凝胶包围和隔离着,并且控制溶液中冰的生长方向为单向生长,冰溶化后纤维就形成了。在另外一种制备孔陶瓷的冻干工艺中,溶剂是直接由固态到气态升华而排除的。通过控制金属盐溶液的冷冻方向获得了方向性好、气孔率很高(>90%)的多孔陶瓷。

自蔓延高温合成(SHS) 工艺

燃烧合成, 又称自蔓延高温合成用燃烧合成技术制备多孔材料的主要过程是放热反应,化学反应释放出来的热量维持反应的自我进行,合成新物质的同时获得了所期望的多孔材料,包括具有一定形状的多孔材料。燃烧合成过程总是伴随着烧结现象,烧结体的孔隙度很高,可以达到50%左右,甚至更高。SHS与常规方法相比主要有以下特点和优势:合成反应过程迅速,能大量节省能源,产品纯度高,工艺相对简单,适合于制备各类无机材料。SHS 存在的主要不足之处是反应快迅速,试样的烧结尺寸难以控制。

水热-热静压工艺

该工艺通过水作为压力传递介质制备各种孔径多孔陶瓷。其简单制备步骤为:硅凝胶和10%(质量百分数)的水混合,置于高压釜中(压力10—15MPa,温度300℃),通过水蒸汽的挥发而制成多孔陶瓷。水热-热静压工艺中,反应时间一般为10—180 min。在25MPa下处理60min,制得的多孔陶瓷材料体积密度为0.88 g/cm,孔体积为0.59cm/g,孔尺寸分布范围为30~50nm,抗压强度高达80MPa。多孔陶瓷水热-热静压工艺具有以下优点:制得的多孔陶瓷材料抗压强度高、性能稳定、孔径分布范围广。

组织遗传制备工艺

该工艺是利用植物材质(木材、竹子等)的天然多孔组织,将其在800~1000℃下和惰性气体环境中热解碳化得到与木材多孔结构几乎完全相同的碳预制体。然后以碳预制体为模板,1600℃时液态硅蒸发形成的硅蒸汽渗入模板与碳化合形成多孔碳化硅陶瓷。该工艺过程简单,成本低廉,但制品的孔结构主要决定于材质本身的组织,可设计性较差,同时SiC的转化率相对较低。也可将木材在真空中浸渍渗入树脂,之后在1200℃左右热解,冷却后得到一定孔隙率的木材陶瓷。

离子交换法

层状硅酸纳晶体与十八烷基三甲基溴化铵在水中充分混合, 硅酸盐层间的阳离子与铵盐阳离子将自发地进行交换, 由于铵盐离子体积较大, 硅酸盐的片层结构会因铵盐的引入而发生弯曲变形, 弯曲的片层之间发生缩聚, 将有机物包围在片层当中, 经高温烧结除去有机物, 即形成多孔SiO2。目前,人们正在研究这种多孔材料的稳定性和比表面积问题, 并期望将其应用于催化或吸附系统中。

应用

载体

多孔陶瓷具有良好的吸附能力和活性。被覆催化剂后,反应流体通过泡沫陶瓷孔道,将大大提高转化效率和反应速率。由于多孔陶瓷具有比表面积高、热稳定性好、耐磨、不易中毒、低密度等特点,作为汽车尾气催化净化器载体已被广泛使用除了作催化剂载体外,它还可以作为其它功能性载体,例如药剂载体、微晶载体、气体储存等。

过滤和分离

1.超纯水的制备和除菌

用硅藻土或粘土熟料质制成的多孔陶瓷滤芯,已用于饮水、石油油井注水用水等的除菌和净化,还用于注射液的消毒过滤,以及电子工业、医药工业、光学透镜研磨用的超纯水的净化等。

2.废水处理

用多孔陶瓷过滤工业废水和生活污水已成为废水处理和净化的重要发展方向,适用各种污染废水,效率高,成本低。

3.腐蚀性流体过滤

多孔陶瓷的强耐腐蚀性使其在过滤酸性、碱性等腐蚀性液体或气体时显示出特有的优势。

4.熔融金属过滤

经多孔陶瓷的过滤能除去熔融金属中大部分的夹杂物和气体等杂质,提高金属材料的强度等内在质量。特别在电子元件、电线用金属和精密铸造用金属方面尤其重要。

5.高温气体过滤

高温烟气的除尘、高温煤气的净化等高温气体的过滤都必须使用耐高温的多孔陶瓷。

6.医药工业食品工业过滤

多孔陶瓷由于具有耐高温、耐腐蚀和良好的生物、化学相容性,因而可用于医药工业中的疫苗、酶、病毒、核酸、蛋白质等生理活性物质的浓缩、分离、精制等。在食品、饮料工业中,特别适用于色、香、味强的饮料及低度酒类的过滤,并可望在啤酒(尤其是生啤)的生产中发挥不可替代的作用。

7.放射性物质的过滤

核电厂等产生大量放射性废物,经过燃烧能成为化学稳定的固体粉末,多孔陶瓷能将其固化,保管起来方便又经济。

吸音材料

多孔陶瓷具有连通开气孔,当声波传入时,在很小的气孔内受力振荡。振动受到的摩擦和阻碍,使声波传播受到抑制,导致声音衰减,从而起到吸音的作用。是一种消除噪声公害,益于人们身心健康的好材料。作为吸音材料的多孔陶瓷要求较小的孔径(20~150/um),相当高的气孔率(>60%)及较高的机械强度。陶瓷所具有的优良的耐火性和耐候性,使它可用于变压器、道路、桥梁等的隔音。现在已在高层建筑、隧道、地铁等防火要求极高的场合及电视发射中心、影剧院等有较高隔音要求的场合使用,效果很好。

隐身材料

多孔陶瓷吸波涂料是一种研制较多的吸波材料,它比铁氧体、复合金属粉末等吸波涂料的密度低、吸波性能好,而且还可以有效地减弱红外辐射信号。另外,多孔陶瓷具有良好的力学性能、热物理性能和化学稳定性,能满足隐身的要求。著名的F-117隐身飞机的尾喷管就使用了多孔陶瓷基吸波材料达到飞机隐身的目的。

隔热保温材料

由于多孔陶瓷具有巨大的气孔率和低的基体热传导系数,其最传统的应用是作为隔热材料。传统的窑

炉、高温电炉其内衬多为多孔陶瓷。为增加其隔热性能还可将内部气体抽真空。目前世界上最好的隔热材料正是这种多孔陶瓷材料。高级的多孔陶瓷隔热材料还可用于航天飞机的外壳隔热。除此以外,由于其多孔性还可以作为换热材料用,且换热充分。

多孔介质燃烧器

多孔介质燃烧器有功率大、范围可调、高功率密度、极低的C0和N0x排放量、安全稳定燃烧等优点。而且很重要的一点是,多孔介质燃烧器的结构紧凑,尺寸大大减小,制造成本低,系统效率较高,消除了额外能耗。

生物工程材料

在传统生物陶瓷基础上研究开发的多孔生物陶瓷,由于生物相容性好,理化性能稳定,无毒副作用的特点而被用于制作生物材料。当用于修补骨缺损部位时,新生物将逐渐进入多孔陶瓷珊瑚状孔隙内,慢慢将多孔陶瓷吸收,最终,这种多孔陶瓷将由新生骨制质取代。与传统生物陶瓷相比,生物体内不会残留任何异物,因而不易感染。国外利用多孔生物陶瓷修复头盖骨、大腿骨、脊椎骨、人造齿根等临床实验均已获成功。

散气(布气)材料

多孔陶瓷还可用于气-液、气-粉两相混合,即通常所说的布气、散气。通过多孔陶瓷的散气作用,使两相接触面积增大而加速反应。目前活性污泥法处理城市污水中使用的多孔陶瓷布气装置就比较成功,不仅布气效果好,而且使用寿命长。利用多孔陶瓷材料将气体吹入粉料中,使粉料处于疏松和流化状态,有利于混匀、传热和均匀受热,能加速反应,防止团聚,便于粉料的输送、加热、干燥和冷却等,特别在水泥、石灰、和氧化铝粉等粉料生产及输送中有着良好的应用前景。

新能源材料

1) 多孔陶瓷因其与液体和气体的接触面积大,使电解池的槽电压比使用一般材料低得多,而成为优良的电解隔膜材料,可大大降低电解槽电压,提高电解效率,节约电能和昂贵的电极材料。目前陶瓷隔膜材料已用在化学电池、燃料电池、光化学电池中,特别是固体氧化物电池。

2)利用多孔陶瓷制备多孔电极。以多孔气体扩散电极为例,它的比表面积不但比平板电极提高3~5个数量级,而且液相传质层的厚度也从平板电极的10cm压缩到1O~10cm,从而大大提高电极的极限电流密度,减少浓差极化。

敏感元件

陶瓷传感器的敏感元件工作原理是当微孔陶瓷元件置于气体或液体介质中时,介质的某些成分被多孔体吸附或与之反应,使微孔陶瓷的电位或电流发生变化,从而检验出气体或液体的成分。比较常用的有温度传感器、湿度传感器、气体传感器以及多功能传感器。

微孔膜

陶瓷分离膜因耐高温、耐酸碱、抗生物侵蚀、不老化、寿命长等优点,被开发应用于食品工业、生物化工、能源工程、环境工程、电子技术等领域。随着材料科学技术的发展,纳米级多孔无机膜的制备和应用成为人们目前研究的热点。微孔无机膜还应用于光学、电子学、磁学等领域。

存在的问题:

材料的脆性;缺乏完整材料的大规模生产系统;缺乏对材料的孔径大小、形状分布等的精确控制方法;缺乏连续生产工艺;缺乏将孔结构与力学性能相联系的有效模型;材料间连接技术的不足;多孔泡沫制备中溶剂提取法的简化;合成催化剂的活性和尺寸选择性;完整的膜净化方法;生产成本高。

最新回答
忐忑的水池
敏感的大地
2025-10-27 11:05:33

导读:多孔陶瓷在各个领域都具有巨大的应用潜力。然而,它们的孔隙和强度之间的矛盾极大地阻碍了它们的应用。本文提出了一种简单的定向凝固工艺,该工艺依靠其原位成孔机制来制备 Al2O3/Y3Al5O12/ZrO2具有高度致密和纳米结构的共晶骨架基体和莲花型多孔结构的陶瓷复合材料。这种孔隙率为34%的多孔陶瓷复合材料在常温下的抗弯强度为497 MPa,创下了目前所有多孔陶瓷强度的新纪录。当温度升高到 1773 K 时,这种强度可以保持在 324 MPa,因为它具有精细的层状结构和牢固的键合界面。本文展示了定向凝固在高效制备高纯度超高强度多孔陶瓷中的有趣应用,这些发现将为多孔陶瓷的强度打开一扇窗。

根据格里菲斯脆性强度理论,传统致密陶瓷可以通过提高断裂韧性 K1c4和减小缺陷尺寸 c 来提高其强度 σ。对于多孔陶瓷,孔隙特性是其强度的额外关键。在此背景下,ln σ 与 P 之间的线性关系已通过实验数据证明,通常表示为 σ = σ0e-BP,其中 σ 是多孔体的强度,σ0是相同材料无孔体的强度,P 为孔隙体积分数,B 为 ln σ vs P 曲线的斜率。B 值由孔隙特征决定,该方程表明,通过同时实现孔特征优化(较小的 B)和孔骨架强化(较高的 σ0)可以获得较高的 σ。具有球形孔和定向棒状孔的陶瓷通过直接发泡制备和牺牲模板,分别获得较小的B。

包括冷冻铸造在内的简易技术13,14和生物模板15还可以指导制备具有高度各向异性排列孔的陶瓷,这些孔在特定加载方向上表现出高σ 。这些方法通常包括两个过程,即构建骨架前体和通过烧结使前体致密化。然而,σ0仍然受到限制,因为烧结方法不适合控制缺陷尺寸 c,特别是对于具有低初始密度的骨架前体。为了提高 σ0,研究人员获得了骨架矩阵。

西北工业大学科研人员提出了一种简单的定向凝固工艺,该工艺依靠其原位成孔机制来制备 具有高度致密和纳米结构的共晶骨架基体和莲花型多孔结构的多孔共晶陶瓷复合材料。 这种孔隙率为34%的多孔陶瓷复合材料在常温下的抗弯强度为497 MPa,创下了目前所有多孔陶瓷强度的新纪录。当温度升高到 1773 K 时,这种强度可以保持在 324 MPa,因为它具有精细的层状结构和牢固的键合界面。我们展示了定向凝固在高效制备高纯度超高强度多孔陶瓷中的有趣应用。这些发现将为多孔陶瓷的强度打开一扇窗。 本文以题“Ultrahigh-Strength Porous Ceramic Composites via a Simple Directional Solidification Process”发表在纳米材料领域顶刊NANO上。

链接: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.2c00116

图 1. (a) 激光浮区装置定向凝固法制备Al2O3/YAG/ZrO2多孔共晶陶瓷复合材料的过程;(b) 原位成孔机制示意图;(c) 气泡和固相耦合生长的动态平衡;(d)移动浮动区域的照片显示的液固界面上的稳定气泡。

图 2. (a) 微计算机断层扫描显示的长 5.70 mm、直径 4.47 mm 的多孔陶瓷棒中孔的 3D 结构;(b) 生长的多孔陶瓷棒断面的典型扫描电子显微镜 (SEM) 图像,表明光滑的孔壁;(c) 生长骨架基质的横截面微观结构的透射电子显微镜 (TEM) 图像。

图4. (a) 不同孔隙率的Al2O3/YAG/ZrO2多孔共晶陶瓷复合材料在室温下的抗弯强度σf和抗压强度σc;(b) ln σ (包括 ln σf和 ln σc) 与 P 的关系。B 的值由它们的线性关系的斜率计算;(c)这项工作的样品与通过各种当前方法制备的报道的多孔陶瓷之间的强度比较。

图 5. (a) 孔隙率为 34.45% 的多孔共晶陶瓷在不同温度下三点弯曲试验的典型应力-位移曲线;(b,c)多孔骨架基质抛光纵向截面的背散射电子图像:(b)原点和(c)弯曲试验后。

总之,作者建立了一个定向凝固技术和多孔陶瓷材料之间的关系。原位成孔机制是它们之间的桥梁,首次为同时强化骨架基质和优化孔隙特性提供了解决方案。上述两个特征有助于刷新当前所有多孔陶瓷的强度记录。孔隙率为34%的试样在常温下的抗弯强度为497 MPa,高于相同成分的致密热压陶瓷。此外,层状共晶结构和相之间的强键合界面使这种多孔陶瓷复合材料在 1773 K 的高温下保持相当大的强度。这项研究证明了定向凝固在有效制备超高强度多孔陶瓷中的有趣应用。高纯度。 随着定向凝固技术的发展和未来更多的成分设计,可以制备出更大尺寸、更高强度的多孔陶瓷复合材料,显著释放多孔陶瓷的潜力。

忧心的招牌
花痴的飞机
2025-10-27 11:05:33
纳米陶瓷专利技术集

1、zno陶瓷薄膜的制备方法

2、zno陶瓷薄膜低压压敏电阻的制备方法

3、保健纳米镀银陶瓷矿物粉清馨片

4、掺杂纳米二氧化钛陶瓷膜的制备方法

5、大颗粒球形纳米陶瓷粉末的生产方法和应用方法

6、大颗粒球形亚微米或纳米或纤维陶瓷复合粉体

7、大颗粒球形亚微米或纳米或纤维陶瓷复合粉体的制备方法

8、大块体致密纳米陶瓷材料及其制备方法

9、带有纳米陶瓷涂层的液态金属容器和金属冶炼炉

10、氮化硅-氮化硼-二氧化硅陶瓷透波材料及其制备方法

11、氮化金属陶瓷及其制备方法

12、等离子体化学气相合成法制备碳氮化钛陶瓷粉体的工艺

13、等离子体化学气相合成法制备碳化硅陶瓷粉体的工艺

14、等离子体化学气相合成法制备碳化钛陶瓷粉体的工艺

15、低成本纳米微晶陶瓷制品的制备方法

16、电子束物理气相沉积制备软磁与陶瓷纳米复合薄膜

17、多孔陶瓷负载的高活性纳米二氧化钛的制备方法

18、多孔质陶瓷纳米级复合材料功能球及其生产工艺

19、二氧化钒及其掺杂物纳米陶瓷的制备方法

20、二氧化钒纳米粉体和纳米陶瓷的制备方法

21、复合金属陶瓷及其制备方法

22、复相结构陶瓷材料及其工艺

23、改性层状结构粉体制备纳米复相陶瓷的方法

24、改性多孔结构粉体制备纳米复相陶瓷的方法

25、钙钛矿化合物晶状陶瓷粉的合成方法

26、高密度纳米陶瓷的制备方法

27、高能纳米陶瓷铅酸蓄电池

28、高频高介电常数微波介质陶瓷及其加工方法

29、高强度高韧性氧化锆基陶瓷及其制备方法

30、激光熔覆纳米陶瓷涂层抗裂的处理方法

31、结构陶瓷用纳米晶氧化锆球状颗粒粉体的制备方法

32、介质陶瓷以及使用该介质陶瓷的谐振器

33、金属、陶瓷粉末精密粘性成形方法

34、具有穿透纳米孔的三氧化二铝陶瓷箔材料的制备方法

35、具有抗菌和活化水功能的特种陶瓷材料及制备方法和应用

36、具有微波吸收功能的碳纳米管或陶瓷复合材料及制备方法

37、聚乙二醇凝胶法合成稳定的立方系纳米晶陶瓷粉

38、可以通过添加氧化钒变暗的透明玻璃陶瓷

39、利用多孔性材料实现陶瓷基板表面平坦化的方法

40、磷酸钙系生物陶瓷纳米粉体的制备方法

41、纳米tio 抗菌陶瓷的制备方法

42、纳米zro 可渗透玻璃陶瓷齿科修复体及其制造工艺

43、纳米zro2(y2o3)或cu复合功能陶瓷材料的制备方法

44、光催化纳米涂层多孔陶瓷净化装置

45、活塞环表面的钛基纳米陶瓷覆盖层及其覆盖加工方法

46、纳米级陶瓷材料掺杂剂、高介抗还原多层陶瓷电容器介质材料及二者的制备方法

47、纳米结构金属丝网-陶瓷复合内衬金属管

48、纳米结构金属丝网-陶瓷复合内衬金属管的制备工艺

49、纳米结构陶瓷涂层材料的精密磨削技术

50、纳米金填充氧化物复合陶瓷薄膜的制备方法

51、纳米金属陶瓷的超声——电化学沉积方法

52、纳米金属陶瓷高耐磨耐空蚀贴片

53、纳米碳化硅-氮化硅复相陶瓷及其制备方法

54、纳米陶瓷材料塑性形变装置

55、纳米陶瓷弹簧生产方法

56、纳米陶瓷的制造方法

57、纳米陶瓷粉体表面乳液聚合改性的方法

58、纳米陶瓷复合粉体及其制备工艺并用于制作节能器

59、纳米陶瓷生物助长器

60、纳米特制陶瓷阴极

61、纳米添加氧化铝陶瓷的改性方法

62、纳米氧化铝胶体功能陶瓷涂料生产方法

63、纳米银镀层陶瓷膜及其制备方法

64、镍内电极钛酸钡基多层陶瓷电容器纳米瓷粉及其制备方法

65、镍—氧化锆金属陶瓷的制备方法

66、奇冰石纳米熔块及纳米日用陶瓷

67、三维有序、孔径可调的多孔纳米陶瓷管的制备方法

68、三氧化二铝-碳化钛基纳米复合陶瓷及其制备方法

69、生物陶瓷与生物降解脂肪族聚酯复合材料的制备方法

70、适用于烘箱的自清洁陶瓷层和制造自清洁陶瓷层的方法

71、四方氧化锆陶瓷的烧结方法

72、碳纳米管增强的塑料或陶瓷基骨修复用复合材料

73、陶瓷颗粒增强铝基纳米复合材料的制造方法

74、微胞陶瓷或金属块体复合材料及制备方法

75、钨青铜结构偏铌酸铅高温陶瓷的制备工艺

76、无机抗菌陶瓷及生产工艺

77、无铅压电陶瓷na bi ti0 纳米线的制备方法

78、稀土掺杂铈酸锶纳米晶陶瓷的制备方法

79、细晶高介陶瓷电容器介质材料及其制备方法

80、压电陶瓷与纳米晶聚氯乙烯复合材料及制备

81、氧化铝基纳米级复相陶瓷的制造方法

82、氧化镁和氧化钇共稳的四方氧化锆多晶陶瓷及制备方法

83、氧化钕和氧化钇共稳定的四方氧化锆多晶陶瓷及制备方法

84、氧化锌压敏陶瓷纳米复合粉体及其制备方法

85、一种li-si-ni-0基高介电常数陶瓷材料及其合成方法

86、一种不锈钢陶瓷复合膜的制备方法及制品

87、一种彩色发光陶瓷

88、一种氮化硅或碳化硅多孔陶瓷的制备方法

89、一种改性的陶瓷微滤膜

90、一种高光输出快衰减闪烁陶瓷及其制备方法

91、一种高能脉冲电沉积陶瓷涂层的方法

92、一种高性能低成本氧化铝复合微晶陶瓷的制备方法

93、一种工件表层纳米陶瓷薄膜制备装置

94、一种金属陶瓷润滑剂及其制造方法

95、一种利用石油焦盐浴合成制备sic微纳米陶瓷粉体的方法

96、一种利用石油焦盐浴合成制备tic微纳米陶瓷粉体的方法

97、一种利用石油焦制备微米到微纳米级碳化物陶瓷颗粒的方法

98、一种利用盐浴合成法制备微纳米金属陶瓷复合粉体的方法

99、一种纳米二氧化硅陶瓷复合材料及其制备方法

100、一种纳米硅铅导电陶瓷材料及制作方法

101、一种纳米级多层陶瓷电容器介电材料的制备方法

102、一种纳米金属陶瓷复合粉体的制备方法

103、一种纳米晶添加氧化铝陶瓷材料及低温液相烧结方法

104、一种纳未级氧化物陶瓷粉末的制备方法

105、一种热压滤法制备纳米和纳米复合陶瓷涂层的方法

106、一种水处理用纳米多微孔陶瓷复合膜的制备方法

107、一种水解硝酸氧锆制备二氧化锆纳米粉体工艺

108、一种陶瓷表面彩色纳米涂层的制备方法

109、一种陶瓷涂层的制备方法

110、一种陶瓷制品、陶瓷制品涂料及生产方法

111、一种以纳米材料制作高韧性陶瓷部件的超微粉碎装置

112、一种用工业丙烷制备纳米陶瓷颗粒材料技术

113、一种制备y2o3纳米粉及透明陶瓷的氢氧化铵沉淀法

114、以纳米tin改性的tic或ti(c,n)基金属陶瓷刀具、该刀具的制造工艺及刀具的使用方法

115、硬脂酸盐法制备纳米晶陶瓷粉

116、永久性自洁净纳米陶瓷釉

117、用反应合成法生产的纳米陶瓷粉末技术

118、用结晶纳米颗粒在支撑层上制造的功能陶瓷层

119、用于净化空气和水的二氧化钛光催化纳米涂层多孔陶瓷材料的制备方法

120、用于陶瓷产品的嵌入颜料和纳米粒子形式的氧化物

121、用于硬组织修复的生物活性纳米氧化钛陶瓷及其制备方法

122、在陶瓷表面上形成金属复合二氧化钛纳米粒子膜的方法

123、在涂料以及陶瓷铀中添加粉体纳米材料方法

124、制备钠米氮化铝陶瓷粉体的方法

125、制备钇铝石榴石纳米粉及透明陶瓷的碳酸氢铵共沉淀法

126、制造纳米结晶玻璃陶瓷纤维的方法

127、致密型陶瓷纤维高温结合剂及其配制方法

128、准纳米级二钡九钛氧化物微波陶瓷及其制造方法

129、自洁净陶瓷及其生产方法

苹果心锁
善良的睫毛
2025-10-27 11:05:33
1)北京科技大学开发成功超轻硬硅钙石型硅酸钙保温材料,

该产品是目前无机硬质保温材料中的一种优良材料,具有较高的强度,可耐1000度高温,因此在许多场合可取代轻质耐火砖、轻质浇注料、珍珠岩制品、玻璃棉制品及耐火纤维制品等。

2)耐高温1000度玻纤布。

沉静的故事
幸福的棉花糖
2025-10-27 11:05:33

“黑匣子”就是黑色的吗?黑匣子是用什么材料制作的?首先要明确一点黑匣子其实并不是黑色的,而是橙色的,为的是醒目方便搜救人员找到,就像下图这样。

一般飞机上有两个黑匣子,一个叫做 “飞行数据记录器(FDR)”,它用以记录飞机飞行的轨迹、高度、速度、姿态等飞行参数。还有一个叫做“驾驶舱语音记录器(CVR)”,它用来记录驾驶舱飞行员之间的对话以及其他声音。两个黑匣子都安装在飞机的尾部。当空难发生后,黑匣子就成了最重要的调查线索之一,调查员可以根据黑匣子记录的数据还原事故当时的场景从而推断出事故原因。因此黑匣子就必须具备保护数据的功能,在遭受猛烈撞击、高温燃烧、长时间被水浸泡以及深海高压等极端恶劣条件之后,依然能够保证里边的数据完整。为此工程师们给黑匣子设计了非常特殊的结构。黑匣子的外壳一般由强度极高的钛合金和铝合金制成,除了抗冲击之外,钛合金外壳还具有极强的耐腐蚀性,保证黑匣子浸泡在海水中依然完好无损。外壳内部是很厚的一层类似海面状的填充物,这个层物质除了给黑匣子提供耐高温性能外,还能起到防冲击的作用。这层材料一般包括了涂层、纳米超级隔热材料、熔融石英材料、纤维-多孔陶瓷复合材料以及相变材料等诸多层次。

在海面状填充材料的中心,就是黑匣子的最核心的部分数据芯片了,如下图。

根据欧洲的标准,黑匣子能够在1000多℃的高温火焰中坚持半小时以上,能够承受非常于100G重力的撞击,浸泡在海水中不被海水腐蚀以及承受海底高达每平方厘米高达数吨的水压。2009年6月1日,法国航空447航班在飞越大西洋时失事坠海,黑匣子在两年后才被打捞上来,经过了两年多在冰冷的大西洋海底高压海水浸泡之后,黑匣子依然提供了准确的数据,为空难事故真相还原提供了决定性的线索,可见黑匣子的“能耐”是多么厉害了。

此文和图片转载于网络,不负任何法律责任,如有侵权请及时联系。

多情的帽子
美满的奇迹
2025-10-27 11:05:33

黑匣子材质是什么

黑匣子材质是什么?在发生飞机事故的时候,一般的救援人员都会大力寻找安装在飞机上的黑匣子,为什么要找那黑匣子,不是应该先救人吗?以下分享黑匣子材质是什么,有什么用。

黑匣子材质是什么1

黑匣子是用金属材料做的。

为了保证这种设备在飞机出事故后不被破坏,特地为它制作了一个坚固的匣子。这种匣子耐高温(600摄氏度~800摄氏度),高压(可承受1吨重的压力),不怕腐蚀,由金属材料做成。

这种金属制作的“黑匣子”并非黑色,黑匣子实际上被漆成明亮的桔红色。这种明亮显眼的颜色,以及记录仪外部的反射条件,都使得事故调查员们可以在飞机失事后很快的找到记录仪,特别是当飞机坠落在水上时。

黑匣子的用途

按照黑匣子的用途,它被形象地称为“法官”、“教官”和“医生”。所谓法官,是基于飞行事故调查的用途,事故发生后通过找回黑匣子,对数据译码分析,可以判定事故真正原因,避免同类事故再次发生。

所谓教官,是指在飞行员监控方面的功能,通过日常分析黑匣子的数据,纠正飞行员不良驾驶习惯,预防事故发生;所谓医生,则是在飞机故障诊断与维护方面的作用,通过对黑匣子数据进行日常分析,监控、预测飞机主要部件的健康状态,排查故障隐患,防止故障发展为事故。

黑匣子材质是什么2

黑匣子”(英文:black box)是飞机专用的电子记录设备之一,名为航空飞行记录器。里面装有飞行数据记录器和舱声录音器,飞机各机械部位和电子仪器仪表都装有传感器与之相连。

它能把飞机停止工作或失事坠毁前半小时的有关技术参数和驾驶舱内的声音记录下来,需要时把所记录的参数重新放出来,供飞行实验、事故分析之用。

黑匣子具有极强的抗火、耐压、耐冲击振动、耐海水(或煤油)浸泡、抗磁干扰等能力,即便飞机已完全损坏,黑匣子里的记录数据也能完好保存。世界上大部分的空难原因都是通过黑匣子找出来的。

黑匣子材质是什么3

黑匣子是什么材质

黑匣子是是用金属材料做的。为了保证这种设备在飞机出事故后不被破坏,特地为它制作了一个坚固的匣子。这种匣子耐高温(600摄氏度~800摄氏度),高压(可承受1吨重的压力),不怕腐蚀,由金属材料做成。其实,这种金属制作的“黑匣子”并非黑色。

黑匣子为什么叫黑匣子

飞行记录仪(英语:Flight Recorder),俗称黑匣子(实为橘色),是安装在航空器上,用于航空事故调查、维修或及飞行试验用途。“黑匣子”叫法形成的原因有很多,其中一种解释认为其来自于早期电影对飞行记录仪的艺术化表述,是一种和处理底片、相片等“暗房”相类似的称呼,这主要也是为了凸显飞行记录仪的神秘感。

谁说黑匣子摔不烂的?砸成饼的黑匣子多了,这玩意只是设计的尽可能坚固,但是这个坚固也是相对的啊,现在黑匣子用芯片了,早年用磁带的时候多少黑匣子找着打开里面的磁带盘都已经摔碎了磁带切成若干段得靠人工一点一点拼接起来,经常有数据丢失,现在用芯片还不知道能摔成啥熊样不过要真碎起来拼都没法拼。

飞机要做成黑匣子这样就没法飞了,你给黑匣子放大装上发动机插上翅膀,结局就是一架737这么大的黑匣子飞机撑死拉几个人,而且这飞机如果出事人该死还是得死,因为就算飞机没散架你也扛不住坠毁的时候这个加速度的冲击,想想那些给摔碎的磁带吧,你比磁带结实多少?

“黑匣子”就是黑色的吗?黑匣子是用什么材料制作的?首先要明确一点黑匣子其实并不是黑色的,而是橙色的,为的是醒目方便搜救人员找到,就像下图这样。

一般飞机上有两个黑匣子,一个叫做 “飞行数据记录器(FDR)”,它用以记录飞机飞行的轨迹、高度、速度、姿态等飞行参数。还有一个叫做“驾驶舱语音记录器(CVR)”,它用来记录驾驶舱飞行员之间的对话以及其他声音。两个黑匣子都安装在飞机的尾部。

当空难发生后,黑匣子就成了最重要的调查线索之一,调查员可以根据黑匣子记录的数据还原事故当时的场景从而推断出事故原因。因此黑匣子就必须具备保护数据的`功能,在遭受猛烈撞击、高温燃烧、长时间被水浸泡以及深海高压等极端恶劣条件之后,依然能够保证里边的数据完整。

为此工程师们给黑匣子设计了非常特殊的结构。黑匣子的外壳一般由强度极高的钛合金和铝合金制成,除了抗冲击之外,钛合金外壳还具有极强的耐腐蚀性,保证黑匣子浸泡在海水中依然完好无损。

外壳内部是很厚的一层类似海面状的填充物,这个层物质除了给黑匣子提供耐高温性能外,还能起到防冲击的作用。这层材料一般包括了涂层、纳米超级隔热材料、熔融石英材料、纤维-多孔陶瓷复合材料以及相变材料等诸多层次。

在海面状填充材料的中心,就是黑匣子的最核心的部分数据芯片了,如下图。

根据欧洲的标准,黑匣子能够在1000多℃的高温火焰中坚持半小时以上,能够承受相当于100G重力的撞击,浸泡在海水中不被海水腐蚀以及承受海底高达每平方厘米高达数吨的水压。

20XX年6月1日,法国航空447航班在飞越大西洋时失事坠海,黑匣子在两年后才被打捞上来,经过了两年多在冰冷的大西洋海底高压海水浸泡之后,黑匣子依然提供了准确的数据,为空难事故真相还原提供了决定性的线索,可见黑匣子的“能耐”是多么厉害了。

淡淡的煎饼
粗心的洋葱
2025-10-27 11:05:33
非常精密的一种吸盘。纳米吸盘是非常精密的一种吸盘的意思,多孔陶瓷同时称之为纳米微孔真空吸盘,是指经过特殊的纳米粉体制造工艺先生产出均匀的实心或者真空球体,通过高温烧结在材料内部生成。

老迟到的画板
喜悦的过客
2025-10-27 11:05:33
你要做什么?是做吸附剂吗?

这个是纳米的:

一种微米—纳米多孔材料的制备方法,其特征在于,利用浆料中的介质水或有机溶剂作为陶瓷材料的造孔剂,利用温度诱导作用,使介质水或有机溶剂在低于0摄氏度的条件下凝固,然后利用冷冻干燥工艺使之升华,升华后留下均匀一致的孔洞,从而得到多孔陶瓷材料,其工艺流程为: (1)陶瓷浆料的制备,其重量的百分配比为;陶瓷粉体5wt%-90wt%分散剂0.1wt%-5wt%烧结添加剂1wt%-20wt%溶剂5wt%-90wt%将溶剂和分散剂混合均匀,陶瓷粉体、烧结添加剂按重量配比称取后与溶液混合,然后球磨10-30小时。 (2)素坯成型:将混合好的陶瓷浆料倒入模具中放进冷冻箱冷冻成型,冷冻温度在0℃以下; (3)冷冻干燥:把冻结的陶瓷坯体转移到冷冻干燥机中进行冷冻干燥,得到具有定向排列的、分布均匀的多孔坯体; (4)坯体的烧结:将干燥后的陶瓷坯体放入烧结炉进行烧结,烧结的温度为600℃-2000℃得到微米—纳米多孔陶瓷材料。  

还有就是木炭。吸附性比较好

留个邮箱 我找到好的给你发过去