建材秒知道
登录
建材号 > 陶瓷砖 > 正文

特种氧化铝陶瓷的热压烧结方法有哪几种

爱笑的柜子
鲤鱼老鼠
2023-01-03 09:39:09

特种氧化铝陶瓷的热压烧结方法有哪几种

最佳答案
高贵的万宝路
精明的电脑
2026-02-12 18:26:28

导热绝缘材料厂家佳日丰泰为您提供优质导热散热绝缘方案,特种氧化铝陶瓷的热压烧结方法总结如下:

特种陶瓷中的最常用的一种就是氧化铝陶瓷,氧化铝陶瓷是以Al2O3为主要原料,以稀有金属氧化物为熔剂,经一千多度高温焙烧而成的特种陶瓷。Al2O3陶瓷氧化铝含量高,结构比较致密,具有特殊的性能,故称为特种陶瓷。Al2O3.陶瓷材料是以氧离子构成的密排六方结构,而铝离子填充于三分之二的八面体间隙中,这是与天然刚玉相同稳定的α- Al2O3结构,因此陶瓷具有高熔点、高硬度,具有优良的耐磨性能。

氧化铝陶瓷的性能特点:耐磨,耐蚀,耐热,耐冲击,高硬度,耐高压,绝缘导热等特点。

特种陶瓷的热压烧结方法有以下几种:

1.一般热压法

2.高温等静压法

其中高温等静压法又包括容器法和无容器法。

最新回答
缓慢的小蝴蝶
勤奋的绿茶
2026-02-12 18:26:28

 一、通过提高Al2O3粉体的细度与活性降低瓷体烧结温度。

与块状物相比,粉体具有很大的比表面积,这是外界对粉体做功的结果。利用机械作用或化学作用来制备粉体时所消耗的机械能或化学能,部分将作为表面能而贮存在粉体中,此外,在粉体的制备过程中,又会引起粉粒表面及其内部出现各种晶格缺陷,使晶格活化。由于这些原因,粉体具有较高的表面自由能。粉体的这种表面能是其烧结的内在动力。因此,Al2O3粉体的颗粒越细,活化程度越高,粉体就越容易烧结,烧结温度越低。在氧化铝瓷低温烧结技术中,使用高活性易烧结Al2O3粉体作原料是重要的手段之一,因而粉体制备技术成为陶瓷低温烧结技术中一个基础环节。

目前,制备超细活化易烧结Al2O3粉体的方法分为二大类,一类是机械法,另一类是化学法。机械法是用机械外力作用使Al2O3粉体颗粒细化,常用的粉碎工艺有球磨粉碎、振磨粉碎、砂磨粉碎、气流粉碎等等。通过机械粉碎方法来提高粉料的比表面积,尽管是有效的,但有一定限度,通常只能使粉料的平均粒径小至1μm左右或更细一点,而且有粒径分布范围较宽,容易带入杂质的缺点。近年来,采用湿化学法制造超细高纯Al2O3粉体发展较快,其中较为成熟的是溶胶—凝胶法。由于溶胶高度稳定,因而可将多种金属离子均匀、稳定地分布于胶体中,通过进一步脱水形成均匀的凝胶(无定形体),再经过合适的处理便可获得活性极高的超微粉混合氧化物或均一的固溶体。目前此法大致有以下3种工艺流程。(1)形成金属氧有机基络合物溶胶→水解并缩合成含羟基的三度空间高分子结构→溶胶蒸发脱水成凝胶→低温煅烧成活性氧化物粉料。(2)含有不同金属离子的酸盐溶液和有机胶混合成溶液→溶胶蒸发脱水成凝胶→低温煅烧成粉体。(3)含有不同金属离子的溶胶直接淬火、沉积或加热成凝胶→低温煅烧成粉体。湿化学法制备的Al2O3粉体粒径可达到纳米级,粒径分布范围窄,化学纯度高,晶体缺陷多。因此化学法粉体的表面能与活性比机械法粉体要高得多。采用这种超细Al2O3粉体作原料不仅能明显降低氧化铝瓷的烧结温度(可降150℃—300℃),而且可以获得微晶高强的高铝瓷材料。表二是日本住友化学有限公司生产的易烧结Al2O3粉料理化指标。

此外,有专家推荐以下三种超细Al2O3粉体制备方法,仅供参考:(1)将(NH4)SO4Al2(SO4)3·2H2O与(MgCO3)4Mg(OH)2·5H2O混合、加热到1200℃分解,可获得含有MgO的纯度为99%、粒度为02~05μm的α—Al2O3超细粉料。(2)将无水二醋酸铝加热到1200℃保温3小时以上,可获得粒度小于05μm的α—Al2O3超细粉体。(3)铁筒钢球,湿磨数百小时,浆料加热酸洗除铁,浮选,反复多次,可制取粒度03—05μm的α—Al2O3超细粉料。

二、通过瓷料配方设计掺杂降低瓷体烧结温度

氧化铝陶瓷的烧结温度主要由其化学组成中Al2O3的含量来决定,Al2O3含量越高,瓷料的烧结温度越高,除此之外,还与瓷料组成系统、各组成配比以及添加物种类有关。比如,在Al2O3含量相当时,CaO-Al2O3-SiO2系Al2O3瓷料比MgO-Al2O3-SiO2系瓷料的烧结温度低,对于我国目前大量生产的CaO-MgO-Al2O3-SiO2系统瓷料而言,为使其具有较低的烧结温度与良好性能,应控制其SiO2/CaO处于16~06之内,MgO含量不超过熔剂类氧化物总量的1/3,同时,在配方中引入少量的La2O3、Y2O3、Cr2O3、MnO、TiO2、ZrO2、Ta2O3等氧化物能进一步降低烧结温度、改善瓷体的微观组织结构和性能。因此,在保证瓷体满足产品使用目的和技术要求的前提下,我们可以通过配方设计,选择合理的瓷料系统,加入适当的助烧添加剂,使氧化铝陶瓷的烧结温度尽可能降低。

目前配方设计中所加入的各种添加剂,根据其促进氧化铝陶瓷烧结的作用机理不同,可以将它们分为形成新相或固溶体的添加剂和生成液相的添加剂二大类。

1、与Al2O3形成新相或固溶体的添加剂。

这类添加剂是一些与氧化铝晶格常数相接近的氧化物,如TiO2、Cr2O3、Fe2O3、MnO2等,在烧成中,这些添加物能与Al2O3生成固溶体,这类固溶体或为掺入固溶体(如Ti4+置换Al3+时),或为有限固溶体,或为连续固溶体(如Cr2O3与Al2O3形成的),它们可以活化晶格(TI4+、Al3+离子半径差所致)、形成空穴或迁移原子,(3TiO2AbO33Tia1+Va1+60)以及使晶格产生变形,这些作用使得Al2O3陶瓷易于重结晶而烧结。例如添加05~10%的TiO2时,可使瓷体的烧结温度下降150—200℃。以固相烧结方式为主的高铝瓷常采用这类添加剂,例如某黑色氧化铝陶瓷配方如下(wt%):Al2O391、CoO05、MnO237、Cr2O321、SiO204、TiO220、V2O303,该瓷料在1350℃下保温2小时烧成。

这类添加剂促进氧化铝瓷烧结的作用具有一定的规律性:①能与Al2O3形成有限固溶体的添加剂较形成连续固溶体的添加剂的降温作用更大;②可变价离子一类添加剂比不变价的添加剂的作用大;③阳离子电荷多的、电价高的添加剂的降温作用更大。需要注意的是,由于这类添加剂是在缺少液相的条件下烧结的(重结晶烧结),故晶体内的气孔较难填充,气密性较差,因而电气性能下降较多,在配方设计时要加以考虑。

2、烧成中形成液相的添加剂。

这类添加剂的化学成分主要有SiO2、CaO、MgO、SrO、BaO等,它们能与其它成分在烧成过程中形成二元、三元或多元低共熔物。由于液相的生成温度低,因而大大地降低了氧化铝瓷的烧结温度。当有相当量(约12%)的液相出现,固体颗粒在液相中有一定的溶解度及固相颗粒能被液相润湿时,其促进烧结作用也更显著。其作用机理在于液相对固相表面的润湿力及表面张力,两者使得固相颗粒靠近并填充气孔。此外,烧结过程中因细小有缺陷的晶体表面活性大,故在液相中的溶解度要比大晶体的大得多。这样,烧结过程中小晶体不断长大,气孔减小,出现重结晶。为了防止因重结晶使晶粒过分长大,影响陶瓷的机械性能,在配方设计中需考虑选用一些对晶粒增大无影响甚至能抑制晶粒增大的添加物,如MgO、CuO和NiO等。

目前,在液相烧结的Al2O3瓷料配方中,助烧添加剂可以采用以下3种物料形态来加入。①以天然矿物形态加入。这类矿物原料主要有:高岭土、膨润土等粘土矿。石英、滑石、菱镁矿、白云石、方解石等等,它们分别引入SiO2、MgO、CaO等化学成分。配方中高岭土及其它粘土矿物的使用,除了满足瓷体化学组成要求外,更主要可以改善坯料的成型性能。添加剂的这种加入形式适用于Al2O3含量在90%以下的中铝瓷配料,例如某低温烧结75瓷配方如下(wt%):煅烧Al2O365、高岭土24、膨润土2、BaCO34、方解石3、生滑石2。

②、以人工合成添加剂形态加入。此法是在CaO-Al2O3-SiO2、MgO-Al2O3-SiO2、CaO-MgO-Al2O3-SiO2等三元、四元或其它相图中找到最低共溶物的组成点,预先按组成点的成分将CaO、MgO、SiO2、Al2O3等所需化合物进行第一次配料,经球磨、煅烧成为低共熔物,即“人工合成添加剂”,然后按一定配比将人工合成添加剂与Al2O3粉料进行第二次配料,以满足氧化铝陶瓷化学组成和性能要求。此法纯度高,主要用于降低化学组成准确、性能要求高的高铝瓷烧结温度,缺点是工艺复杂,能耗高,制品成本高,只在特殊情况下采用。

③以化工原料形态加入。在配料时,直接将各种化工原料作为添加剂与Al2O3粉体一起一次完成配料,各助烧添加剂的组成比例仍然是参照专业相图中最低共熔点的组成来设定。生产实践证明,此法不仅与人工合成添加剂法具有同样的降温效果,而且大大简化了工艺,无论配方设计、配料计算和工艺过程都比人工合成添加剂法简便,也比天然矿物形态更容易,瓷质性能稳定,节能效益显著。在实际生产中,从降低成本和坯料成型性能方面考虑,天然矿物原料和化工原料往往是同时使用的。例如某低温烧成(1500℃×2h)的高铝瓷配方如下(wt%);α-Al2O393、苏州土3、烧骨石2、CaCO315、BaCO305、外加ZrO2、CeO2、La2O32%。

三、采用特殊烧成工艺降低瓷体烧结温度

采用热压烧结工艺,在对坯体加热的同时进行加压,那么烧结不仅是通过扩散传质来完成,此时塑性流动起了重要作用,坯体的烧结温度将比常压烧结低很多,因此热压烧结是降低Al2O3陶瓷烧结温度的重要技术之一。目前热压烧结法中有压力烧结法和高温等静压烧结法(HIP)二种。HIP法可使坯体受到各向同性的压力,陶瓷的显微结构比压力烧结法更加均匀。就氧化铝瓷而言,如果常压下普通烧结必须烧至1800℃以上的高温,热压20MPa烧结,在1000℃左右的较低温度下就已致密化了。

热压烧结技术不仅显著降低氧化铝瓷的烧结温度,而且能较好地抑制晶粒长大,能够获得致密的微晶高强的氧化铝陶瓷,特别适合透明氧化铝陶瓷和微晶刚玉瓷的烧结。

此外,由于氧化铝的烧结过程与阴离子的扩散速率有关,而还原气氛有利于阴离子空位的增加,可促进烧结的进行。因此,真空烧结、氢气氛烧结等是实现氧化铝瓷低温烧结的有效辅助手段。

在生产实践中,为获得最佳综合经济效益,上述低烧技术往往相互配合使用,其中加入助烧添加剂的方法相对其它方法而言,具有成本低、效果好、工艺简便实用的特点。在中铝瓷、高铝瓷和刚玉瓷的生产中被广泛使用。另外,从材料角度来看,通过掺杂改性技术,大幅度提高氧化铝陶瓷的各项机电性能,用Al2O3含量低的瓷体代替Al2O3含量高的瓷体,也是企业常用的降低氧化铝陶瓷产品烧结温度的有效技术手段。比如在材料性能满足产品使用要求下,用85瓷代替90瓷或95瓷,用90瓷、95瓷代替99瓷等都是可行的。

虽然氧化铝瓷低烧技术已取得较好的经济效益,但仍有潜力可挖,目前仍有一些产品,从材料的特殊性能要求和高温状态下器件的尺寸稳定性考虑,仍然采用高温烧结,如何将这类产品的烧结温度也降下来,是今后瓷体掺杂改性等低烧技术的努力方向。

贪玩的高山
想人陪的小懒虫
2026-02-12 18:26:28
1、在高温下,陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。 2、制取无机固体材料的一种过程。在利用固相反应制备无机固体化合物时,反应的速率由扩散过程控制,常常需要较高的温度才能使反应有效地进行。另外一些固体化合物是固液相组成的化合物,在熔化时会发生分解反应,故烧结一般应在产物熔点以下进行,以保证得到均匀的物相。但是烧结温度也不能太低,否则会使固相反应的速率太低。在很多情况下,烧结需要在特定的气氛或真空中进行。控制烧结过程的气相分压非常重要,特别是当研究的体系中含有价态可变的离子时,固相反应的气相分压将直接影响到产物的组成和结构。例如,在铜系氧化物高温超导体的合成中,烧结过程必须在严格控制氧分压,以保证得到具有确定结构、组成和铜价态分布的超导材料。 3、是聚四氟乙烯(PTFE)加工过程中的一个重要步骤。聚四氟乙烯预成型品必须通过烧结才能成为有用的制品。烧结是将预成型品加热至熔点(327℃)以上,并在此温度下保持一定时间,使聚合物分子由结晶形逐渐转变为无定型,使分散的树脂颗粒通过相互熔融扩散黏结成一个连续的整体。烧结全的预成型品由透明胶状体冷却成坚固的乳白色的不透明制品。 1、烧结 sintering 粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。 2、填料 packing material 在预烧或烧结过程中为了起分隔和保护作用而将压坯埋入其中的一种材料。 3、预烧 presintering 在低于最终烧结温度的温度下对压坯的加热处理。 4、加压烧结 pressure 在烧结同时施加单轴向压力的烧结工艺。 5、松装烧结 loose-powder sintering,gravity sintering 粉末未经压制直接进行的烧结。 6、液相烧结 liquid-phase sintering 至少具有两种组分的粉末或压坯在形成一种液相的状态下烧结。 7、过烧 oversintering 烧结温度过高和(或)烧结时间过长致使产品最终性能恶化的烧结。 8、欠烧 undersintering 烧结温度过低和(或)烧结时间过短致使产品未达到所需性能的烧结。 9、熔渗 infiltration 用熔点比制品熔点低的金属或合金在熔融状态下充填未烧结的或烧结的制品内的孔隙的工艺方法。 10、脱蜡 dewaxing,burn-off 用加热排出压坯中的有机添加剂(粘结剂或润滑剂)。 11、网带炉 mesh belt furnace 一般由马弗保护的网带将零件实现炉内连续输送的烧结炉。 12、步进梁式炉 walking-beam furnace 通过步进梁系统将放置于烧结盘中的零件在炉内进行传送的烧结炉。 13、推杆式炉 pusher furnace 将零件装入烧舟中,通过推进系统将零件在炉内进行传送的烧结炉。 14、烧结颈形成 neck formation 烧结时在颗粒间形成颈状的联结。 15、起泡 blistering 由于气体剧烈排出,在烧结件表面形成鼓泡的现象。 16、发汗 sweating 压坯加热处理时液相渗出的现象。 17、烧结壳 sinter skin 烧结时,烧结件上形成的一种表面层,其性能不同于产品内部。 18、相对密度 relative density 多孔体的密度与无孔状态下同一成分材料的密度之比,以百分率表示。 19、径向压溃密度 radial crushing strength 通过施加径向压力测定的烧结圆筒试样的破裂强度。 20、孔隙度 porosity 多孔体中所有孔隙的体积与总体积之比。 21、扩散孔隙 diffusion porosity 由于柯肯达尔效应导致的一种组元物质扩散到另一组元中形成的孔隙。 22、孔径分布 pore size distribution 材料中存在的各级孔径按数量或体积计算的百分率。 23、表观硬度 apparent hardness 在规定条件下测定的烧结材料的硬度,它包括了孔隙的影响。 24、实体硬度 solid hardness 在规定条件下测定的烧结材料的某一相或颗粒或某一区域的硬度,它排除了孔隙的影响。 25、起泡压力 bubble-point pressure 迫使气体通过液体浸渍的制品产生第一气泡所需的最小的压力。 26、流体透过性 fluid permeability 在规定条件下测定的在单位时间内液体或气体通过多孔体的数量。

秀丽的手套
碧蓝的眼睛
2026-02-12 18:26:28
氧化铝陶瓷的烧结是通过表面张力来使物质迁移而得到实现,采用纯度高,粒径小, 比表面积大, 表面活性高的单分散超细Al2O3粉料, 由于颗粒间扩算距离短, 只需要较低的烧结温度和烧结活化能。另外, 氧化铝颗粒粒度的分布范围要尽可能的窄, 颗粒均匀,如果极细的颗粒中间夹杂着个别大颗粒, 烧结得到的产品性能很差。加入1-5%的高纯纳米氧化铝(VK-L30) ,可以使Al2O3瓷的烧结温度降低50-150℃ ,增加韧性、白度、纯度,不易碎瓷,并且大大节约能源,大大提高了产品质量。

可靠的服饰
矮小的大门
2026-02-12 18:26:28
活化热压烧结的方法。假设要提高氧化铝陶瓷的烧结速度和制品密度,采取的是活化热压烧结的措施,氧化铝陶瓷是一种以氧化铝为主体的陶瓷材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性,需要注意的是需用超声波进行洗涤。

受伤的高山
斯文的超短裙
2026-02-12 18:26:28

(1)预烧料随着研磨时间的延长,制品烧结密度有明显增加。在同一烧结温度下,不同研磨时间,可使制品体积密度有明显差别。

(2)在1600℃下烧成时,预烧料研磨时间的长短对制品的体积密度和线收缩率有较大影响;而随着烧成温度的逐渐提高,这种影响逐渐减弱,如在1850℃下烧成时,影响很小。

(3)预烧料研磨时间达到一定时间后,再继续延长,对制品的体积密度增加作用不大,故研磨时间应在一定的时间范围内。有研究表明:研磨40h以上,浆料颗粒均小于5μm,制品的刚玉晶粒呈细小柱状,说明再结晶作用不很强烈;而研磨120h的浆料几乎全部小于2/μm,其中小于1/μm的约50%,制品的刚玉晶粒则呈粗大柱状,比前者晶粒大1倍。

因此,研磨必须达到一定时间,使浆料中小于1/μm的含量近50%,有利于坯体的烧结和再结晶。

优秀的可乐
犹豫的硬币
2026-02-12 18:26:28
氧化铝陶瓷粉-----球磨-----制浆(加入粘结剂、分散机等)----造粒----成型(包括干压成型、注浆成型、热压、注射成型、等静压等等,根据你说的陶瓷片的话,干压就行了)---烧结(1550度以上)

愤怒的芒果
舒适的舞蹈
2026-02-12 18:26:28
(1)添加剂自身或与基体反应生成液相:氧化 铝 是 玻 璃 的 中 间体,在 许 多 玻 璃 中 都 具 有 一 定 的 溶 解 度,如MgO-Al2O3-SiO2(MAS), CaO-Al2O3-SiO2(CAS), Li2O-Al2O3 -SiO2 (LAS)系统。在这些玻璃相存在的情况下,可通过溶解-沉淀机理,促进氧化铝烧结。同时使氧化铝晶粒在长大过程中出现择优生长。在一个方向上具有较高的生长速率,形成棒晶。

(2)与基体氧化铝形成固溶体。

(3)与基体氧化铝通过固相反应生长出新的复合相。

其他因素

其它因素主要包括炉内气氛、烧结过程中是否加压等。早在 1962 年,Coble就讨论了不同气氛对烧结的影响。指出掺杂 质量含量为0.25%MgO 的 Al2O3 在氢气和氧气中可烧结到理论密度,而在空气、氮气或氩气中不能。压力的存在有助于气孔的排空,促进样品的致密。同时,对于无压烧结的样品,气氛对氧化铝材料的密度也有重要影响,不同气氛下样品的晶粒大小,尺寸分布,晶粒的长径比等,都出现显著差异。氮气氛下烧结的样品,晶粒长径比更大,尺寸更小,粒度分布也更窄。陶瓷的制备过程,有着复杂的作用机理和影响方式,制备过程中每一个步骤都可能极大的影响到烧结和显微结构。因此控制好制备过程中的工艺参数,或者通过引进和研发新的工艺方法以获得理想结果,一直是材料工作者努力的方向。

微晶氧化铝陶瓷在各行业的应用现状

微晶氧化铝陶瓷具有高强度、高硬度、耐磨损、耐腐蚀、耐高温及高绝缘、低介电损耗、电性能稳定等特性,是先进陶瓷材料中应用领域最广、用量最大、发展潜力最大的一种新型工业材料。全球范围内的能源紧张和生态环境保护意识的增强,促进了微晶氧化铝陶瓷快速发展。

微晶氧化铝陶瓷发展趋势

我国先进陶瓷材料经过50余年的发展,在新产品开发、产业化等方面显示出强劲的势头。氧化铝陶瓷作为先进陶瓷中应用最广的一种材料,伴随着整个行业的发展呈现以下发展趋势:

(1)技术装备水平将快速提高:计算机技术和数字化控制技术的发展促进了先进陶瓷材料工业的技术进步和快速发展,诸如自动控制连续烧结窑炉、大功率大容量研磨设备、高性能制粉造粒设备、等净压成型设备等先进的成套设备有利地推动了行业整体水平的提高,同时在生产效率、产品质量等方面也都明显改善。

(2)产品质量水平不断提高:国内微晶氧化铝陶瓷制品从无到有,产业规模从小到大,产品质量从低到较高,经历了一个快速发展的历程。仅以作为研磨介质的氧化铝制品为例,其某些品种或规格的产品已经接近或达到进口产品先进水平,在许多领域已经能够全面替代价格较高的氧化锆产品并且随着制造技术的发展和近净尺寸成型、低温烧结及高效冷加工技术的不断成熟,微晶氧化铝陶瓷制品的质量将进一步提高。

(3)产业规模将迅速扩大:微晶氧化铝陶瓷制品作为其它行业或领域的基础材料,受着其它行业发展水平的影响和限制。从目前氧化铝陶瓷的应用情况看,应用范围越来越宽,用量越来越大。特别是在防磨工程和建筑陶瓷生产方面的用量增加将更为显著。

结束语

总之,微晶氧化铝陶瓷具有稳定的理化性能和十分优异的电性能,近年来在各个领域得到了较为广泛的应用。随着科学技术的发展、制造水平的提高,对氧化铝陶瓷性能也不断提出新的要求,在《中国高新技术产品目录》的高能功能陶瓷、结构陶瓷中,氧化铝陶瓷基片、铬氧化铝陶瓷、微晶氧化铝陶瓷耐磨材料以及其他以氧化铝为主要原料的各种陶瓷材料与制品均收录其中。氧化铝陶瓷新材料的研究、开发与应用将是今后的热点, 同时各种高性能的氧化铝陶瓷新材料、新产品、新技术也将不断涌现。

缓慢的钢笔
高大的鞋子
2026-02-12 18:26:28
两步法烧结氧化铝陶瓷是Chen I-Wei首次试验发现,发表在Nature上,主要是用纳米粉烧结氧化镁陶瓷,通过两步法抑制晶粒长大,思想是:第一步在高温短时烧结氧化镁陶瓷,这时候要达到足够的致密度(大于90%),第二步低温长时间烧结(窗口温度),这时候晶粒几乎没有长大驱动力,但是气孔可以通过晶界扩散消除,晶界扩散需要很长的时间,最后得到晶粒细小的氧化镁陶瓷,他用的是10纳米的粉体,最终烧结的氧化镁陶瓷晶粒80纳米左右。常规的工艺晶粒至少是微米级别的。

年轻的金鱼
谦让的冬日
2026-02-12 18:26:28
主要有5个方面

(1)烧结温度和保温时间

(2)添加剂:在固相烧结中,少量添加剂(又称烧结助剂)可与主晶相形成固溶体促进缺陷增加;在液相烧结中,添加剂能改变液相的性质(如黏度、组成等),从而起到促进烧结的作用。

(3)原始粉料的粒度:细颗粒由于增加了烧结的推动力,缩短了原子扩散距离和提高颗粒在液相中的溶解度而导致烧结过程的加速。

(4)盐类的选择及其煅烧条件:

(5)成型压力:陶瓷粉料成型时往往施加一定的压力,除了使其有一定形状和一定强度外,同时也给烧结创造了颗粒间紧密接触的条件,使其烧结时扩散阻力减小。一般地,成型压力愈大,颗粒间接触愈紧密,对烧结愈有利。